|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput, logging |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin |
|
import torch.nn.functional as F |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
@dataclass |
|
|
|
class EulerDiscreteSchedulerOutput(BaseOutput): |
|
""" |
|
Output class for the scheduler's `step` function output. |
|
|
|
Args: |
|
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the |
|
denoising loop. |
|
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): |
|
The predicted denoised sample `(x_{0})` based on the model output from the current timestep. |
|
`pred_original_sample` can be used to preview progress or for guidance. |
|
""" |
|
|
|
prev_sample: torch.FloatTensor |
|
pred_original_sample: Optional[torch.FloatTensor] = None |
|
|
|
|
|
|
|
def betas_for_alpha_bar( |
|
num_diffusion_timesteps, |
|
max_beta=0.999, |
|
alpha_transform_type="cosine", |
|
): |
|
""" |
|
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of |
|
(1-beta) over time from t = [0,1]. |
|
|
|
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up |
|
to that part of the diffusion process. |
|
|
|
|
|
Args: |
|
num_diffusion_timesteps (`int`): the number of betas to produce. |
|
max_beta (`float`): the maximum beta to use; use values lower than 1 to |
|
prevent singularities. |
|
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar. |
|
Choose from `cosine` or `exp` |
|
|
|
Returns: |
|
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs |
|
""" |
|
if alpha_transform_type == "cosine": |
|
|
|
def alpha_bar_fn(t): |
|
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2 |
|
|
|
elif alpha_transform_type == "exp": |
|
|
|
def alpha_bar_fn(t): |
|
return math.exp(t * -12.0) |
|
|
|
else: |
|
raise ValueError(f"Unsupported alpha_tranform_type: {alpha_transform_type}") |
|
|
|
betas = [] |
|
for i in range(num_diffusion_timesteps): |
|
t1 = i / num_diffusion_timesteps |
|
t2 = (i + 1) / num_diffusion_timesteps |
|
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta)) |
|
return torch.tensor(betas, dtype=torch.float32) |
|
|
|
|
|
|
|
def rescale_zero_terminal_snr(betas): |
|
""" |
|
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1) |
|
|
|
|
|
Args: |
|
betas (`torch.FloatTensor`): |
|
the betas that the scheduler is being initialized with. |
|
|
|
Returns: |
|
`torch.FloatTensor`: rescaled betas with zero terminal SNR |
|
""" |
|
|
|
alphas = 1.0 - betas |
|
alphas_cumprod = torch.cumprod(alphas, dim=0) |
|
alphas_bar_sqrt = alphas_cumprod.sqrt() |
|
|
|
|
|
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone() |
|
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone() |
|
|
|
|
|
alphas_bar_sqrt -= alphas_bar_sqrt_T |
|
|
|
|
|
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T) |
|
|
|
|
|
alphas_bar = alphas_bar_sqrt**2 |
|
alphas = alphas_bar[1:] / alphas_bar[:-1] |
|
alphas = torch.cat([alphas_bar[0:1], alphas]) |
|
betas = 1 - alphas |
|
|
|
return betas |
|
|
|
|
|
class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin): |
|
""" |
|
Euler scheduler. |
|
|
|
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic |
|
methods the library implements for all schedulers such as loading and saving. |
|
|
|
Args: |
|
num_train_timesteps (`int`, defaults to 1000): |
|
The number of diffusion steps to train the model. |
|
beta_start (`float`, defaults to 0.0001): |
|
The starting `beta` value of inference. |
|
beta_end (`float`, defaults to 0.02): |
|
The final `beta` value. |
|
beta_schedule (`str`, defaults to `"linear"`): |
|
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from |
|
`linear` or `scaled_linear`. |
|
trained_betas (`np.ndarray`, *optional*): |
|
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`. |
|
prediction_type (`str`, defaults to `epsilon`, *optional*): |
|
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process), |
|
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen |
|
Video](https://imagen.research.google/video/paper.pdf) paper). |
|
interpolation_type(`str`, defaults to `"linear"`, *optional*): |
|
The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of |
|
`"linear"` or `"log_linear"`. |
|
use_karras_sigmas (`bool`, *optional*, defaults to `False`): |
|
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`, |
|
the sigmas are determined according to a sequence of noise levels {σi}. |
|
timestep_spacing (`str`, defaults to `"linspace"`): |
|
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and |
|
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information. |
|
steps_offset (`int`, defaults to 0): |
|
An offset added to the inference steps. You can use a combination of `offset=1` and |
|
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable |
|
Diffusion. |
|
rescale_betas_zero_snr (`bool`, defaults to `False`): |
|
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and |
|
dark samples instead of limiting it to samples with medium brightness. Loosely related to |
|
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506). |
|
""" |
|
|
|
_compatibles = [e.name for e in KarrasDiffusionSchedulers] |
|
order = 1 |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_train_timesteps: int = 1000, |
|
beta_start: float = 0.0001, |
|
beta_end: float = 0.02, |
|
beta_schedule: str = "linear", |
|
trained_betas: Optional[Union[np.ndarray, List[float]]] = None, |
|
prediction_type: str = "epsilon", |
|
interpolation_type: str = "linear", |
|
use_karras_sigmas: Optional[bool] = False, |
|
sigma_min: Optional[float] = None, |
|
sigma_max: Optional[float] = None, |
|
timestep_spacing: str = "linspace", |
|
timestep_type: str = "discrete", |
|
steps_offset: int = 0, |
|
rescale_betas_zero_snr: bool = False, |
|
): |
|
if trained_betas is not None: |
|
self.betas = torch.tensor(trained_betas, dtype=torch.float32) |
|
elif beta_schedule == "linear": |
|
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32) |
|
elif beta_schedule == "scaled_linear": |
|
|
|
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2 |
|
elif beta_schedule == "squaredcos_cap_v2": |
|
|
|
self.betas = betas_for_alpha_bar(num_train_timesteps) |
|
else: |
|
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") |
|
|
|
if rescale_betas_zero_snr: |
|
self.betas = rescale_zero_terminal_snr(self.betas) |
|
|
|
self.alphas = 1.0 - self.betas |
|
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0) |
|
|
|
if rescale_betas_zero_snr: |
|
|
|
|
|
self.alphas_cumprod[-1] = 2**-24 |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy() |
|
|
|
sigmas = sigmas[::-1].copy() |
|
|
|
if self.use_karras_sigmas: |
|
log_sigmas = np.log(sigmas) |
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_train_timesteps) |
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) |
|
|
|
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32) |
|
|
|
|
|
self.num_inference_steps = None |
|
|
|
|
|
if timestep_type == "continuous" and prediction_type == "v_prediction": |
|
self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]) |
|
else: |
|
self.timesteps = torch.from_numpy(timesteps.astype(np.float32)) |
|
|
|
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) |
|
|
|
self.is_scale_input_called = False |
|
self.use_karras_sigmas = use_karras_sigmas |
|
|
|
self._step_index = None |
|
|
|
@property |
|
def init_noise_sigma(self): |
|
|
|
max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max() |
|
if self.config.timestep_spacing in ["linspace", "trailing"]: |
|
return max_sigma |
|
|
|
return (max_sigma**2 + 1) ** 0.5 |
|
|
|
@property |
|
def step_index(self): |
|
""" |
|
The index counter for current timestep. It will increae 1 after each scheduler step. |
|
""" |
|
return self._step_index |
|
|
|
def scale_model_input( |
|
self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor] |
|
) -> torch.FloatTensor: |
|
""" |
|
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the |
|
current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm. |
|
|
|
Args: |
|
sample (`torch.FloatTensor`): |
|
The input sample. |
|
timestep (`int`, *optional*): |
|
The current timestep in the diffusion chain. |
|
|
|
Returns: |
|
`torch.FloatTensor`: |
|
A scaled input sample. |
|
""" |
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
sample = sample / ((sigma**2 + 1) ** 0.5) |
|
|
|
self.is_scale_input_called = True |
|
return sample |
|
|
|
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None): |
|
""" |
|
Sets the discrete timesteps used for the diffusion chain (to be run before inference). |
|
|
|
Args: |
|
num_inference_steps (`int`): |
|
The number of diffusion steps used when generating samples with a pre-trained model. |
|
device (`str` or `torch.device`, *optional*): |
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. |
|
""" |
|
self.num_inference_steps = num_inference_steps |
|
|
|
|
|
if self.config.timestep_spacing == "linspace": |
|
timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[ |
|
::-1 |
|
].copy() |
|
elif self.config.timestep_spacing == "leading": |
|
step_ratio = self.config.num_train_timesteps // self.num_inference_steps |
|
|
|
|
|
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32) |
|
timesteps += self.config.steps_offset |
|
elif self.config.timestep_spacing == "trailing": |
|
step_ratio = self.config.num_train_timesteps / self.num_inference_steps |
|
|
|
|
|
timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32) |
|
timesteps -= 1 |
|
else: |
|
raise ValueError( |
|
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'." |
|
) |
|
|
|
sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) |
|
log_sigmas = np.log(sigmas) |
|
|
|
if self.config.interpolation_type == "linear": |
|
sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas) |
|
elif self.config.interpolation_type == "log_linear": |
|
sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy() |
|
else: |
|
raise ValueError( |
|
f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either" |
|
" 'linear' or 'log_linear'" |
|
) |
|
|
|
if self.use_karras_sigmas: |
|
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps) |
|
timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas]) |
|
|
|
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device) |
|
|
|
|
|
if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction": |
|
self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas]).to(device=device) |
|
else: |
|
self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device) |
|
|
|
self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)]) |
|
self._step_index = None |
|
|
|
def _sigma_to_t(self, sigma, log_sigmas): |
|
|
|
log_sigma = np.log(np.maximum(sigma, 1e-10)) |
|
|
|
|
|
dists = log_sigma - log_sigmas[:, np.newaxis] |
|
|
|
|
|
low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2) |
|
high_idx = low_idx + 1 |
|
|
|
low = log_sigmas[low_idx] |
|
high = log_sigmas[high_idx] |
|
|
|
|
|
w = (low - log_sigma) / (low - high) |
|
w = np.clip(w, 0, 1) |
|
|
|
|
|
t = (1 - w) * low_idx + w * high_idx |
|
t = t.reshape(sigma.shape) |
|
return t |
|
|
|
|
|
def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor: |
|
"""Constructs the noise schedule of Karras et al. (2022).""" |
|
|
|
|
|
|
|
if hasattr(self.config, "sigma_min"): |
|
sigma_min = self.config.sigma_min |
|
else: |
|
sigma_min = None |
|
|
|
if hasattr(self.config, "sigma_max"): |
|
sigma_max = self.config.sigma_max |
|
else: |
|
sigma_max = None |
|
|
|
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item() |
|
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item() |
|
|
|
rho = 7.0 |
|
ramp = np.linspace(0, 1, num_inference_steps) |
|
min_inv_rho = sigma_min ** (1 / rho) |
|
max_inv_rho = sigma_max ** (1 / rho) |
|
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho |
|
return sigmas |
|
|
|
def _init_step_index(self, timestep): |
|
if isinstance(timestep, torch.Tensor): |
|
timestep = timestep.to(self.timesteps.device) |
|
|
|
index_candidates = (self.timesteps == timestep).nonzero() |
|
|
|
|
|
|
|
|
|
|
|
if len(index_candidates) > 1: |
|
step_index = index_candidates[1] |
|
else: |
|
step_index = index_candidates[0] |
|
|
|
self._step_index = step_index.item() |
|
|
|
def step( |
|
self, |
|
model_output: torch.FloatTensor, |
|
timestep: Union[float, torch.FloatTensor], |
|
sample: torch.FloatTensor, |
|
s_churn: float = 0.0, |
|
s_tmin: float = 0.0, |
|
s_tmax: float = float("inf"), |
|
s_noise: float = 1.0, |
|
generator: Optional[torch.Generator] = None, |
|
return_dict: bool = True, |
|
) -> Union[EulerDiscreteSchedulerOutput, Tuple]: |
|
""" |
|
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion |
|
process from the learned model outputs (most often the predicted noise). |
|
|
|
Args: |
|
model_output (`torch.FloatTensor`): |
|
The direct output from learned diffusion model. |
|
timestep (`float`): |
|
The current discrete timestep in the diffusion chain. |
|
sample (`torch.FloatTensor`): |
|
A current instance of a sample created by the diffusion process. |
|
s_churn (`float`): |
|
s_tmin (`float`): |
|
s_tmax (`float`): |
|
s_noise (`float`, defaults to 1.0): |
|
Scaling factor for noise added to the sample. |
|
generator (`torch.Generator`, *optional*): |
|
A random number generator. |
|
return_dict (`bool`): |
|
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or |
|
tuple. |
|
|
|
Returns: |
|
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`: |
|
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is |
|
returned, otherwise a tuple is returned where the first element is the sample tensor. |
|
""" |
|
|
|
if ( |
|
isinstance(timestep, int) |
|
or isinstance(timestep, torch.IntTensor) |
|
or isinstance(timestep, torch.LongTensor) |
|
): |
|
raise ValueError( |
|
( |
|
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to" |
|
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass" |
|
" one of the `scheduler.timesteps` as a timestep." |
|
), |
|
) |
|
|
|
if not self.is_scale_input_called: |
|
logger.warning( |
|
"The `scale_model_input` function should be called before `step` to ensure correct denoising. " |
|
"See `StableDiffusionPipeline` for a usage example." |
|
) |
|
|
|
if self.step_index is None: |
|
self._init_step_index(timestep) |
|
|
|
|
|
sample = sample.to(torch.float32) |
|
|
|
sigma = self.sigmas[self.step_index] |
|
|
|
gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0 |
|
|
|
noise = randn_tensor( |
|
model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator |
|
) |
|
|
|
eps = noise * s_noise |
|
sigma_hat = sigma * (gamma + 1) |
|
|
|
if gamma > 0: |
|
sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5 |
|
|
|
|
|
|
|
|
|
if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample": |
|
pred_original_sample = model_output |
|
elif self.config.prediction_type == "epsilon": |
|
pred_original_sample = sample - sigma_hat * model_output |
|
elif self.config.prediction_type == "v_prediction": |
|
|
|
pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1)) |
|
else: |
|
raise ValueError( |
|
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`" |
|
) |
|
|
|
|
|
derivative = (sample - pred_original_sample) / sigma_hat |
|
|
|
dt = self.sigmas[self.step_index + 1] - sigma_hat |
|
|
|
prev_sample = sample + derivative * dt |
|
|
|
|
|
prev_sample = prev_sample.to(model_output.dtype) |
|
|
|
|
|
self._step_index += 1 |
|
|
|
if not return_dict: |
|
return (prev_sample,) |
|
|
|
return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
def add_noise( |
|
self, |
|
original_samples: torch.FloatTensor, |
|
noise: torch.FloatTensor, |
|
timesteps: torch.FloatTensor, |
|
) -> torch.FloatTensor: |
|
|
|
sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype) |
|
if original_samples.device.type == "mps" and torch.is_floating_point(timesteps): |
|
|
|
schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32) |
|
timesteps = timesteps.to(original_samples.device, dtype=torch.float32) |
|
else: |
|
schedule_timesteps = self.timesteps.to(original_samples.device) |
|
timesteps = timesteps.to(original_samples.device) |
|
|
|
step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] |
|
|
|
sigma = sigmas[step_indices].flatten() |
|
while len(sigma.shape) < len(original_samples.shape): |
|
sigma = sigma.unsqueeze(-1) |
|
|
|
noisy_samples = original_samples + noise * sigma |
|
return noisy_samples |
|
|
|
def __len__(self): |
|
return self.config.num_train_timesteps |
|
|