File size: 27,365 Bytes
e1aaa1a 34e847e e1aaa1a 040604a e1aaa1a 0298414 e1aaa1a 0298414 e1aaa1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 |
# ------------------------------------------------------------------------------
# Copyright (c) Microsoft
# Licensed under the MIT License.
# The deconvolution code is based on Simple Baseline.
# (https://github.com/microsoft/human-pose-estimation.pytorch/blob/master/lib/models/pose_resnet.py)
# Modified by Zigang Geng (zigang@mail.ustc.edu.cn).
# ------------------------------------------------------------------------------
import torch
import torch.nn as nn
from timm.models.layers import trunc_normal_, DropPath
from mmcv.cnn import (build_conv_layer, build_norm_layer, build_upsample_layer,
constant_init, normal_init)
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
import torch.nn.functional as F
import sys
import os
current_script_path = os.path.abspath(__file__)
parent_folder_path = os.path.dirname(os.path.dirname(current_script_path))
sys.path.append(parent_folder_path)
parent_folder_path = os.path.dirname(parent_folder_path)
print(parent_folder_path)
# Add the parent folder to sys.path
sys.path.append(parent_folder_path)
from .evpconfig import EVPConfig
from .models import UNetWrapper, TextAdapterRefer, FrozenCLIPEmbedder
from .miniViT import mViT
from .attractor import AttractorLayer, AttractorLayerUnnormed
from .dist_layers import ConditionalLogBinomial
from .localbins_layers import (Projector, SeedBinRegressor, SeedBinRegressorUnnormed)
import os
from transformers import PreTrainedModel
import sys
current_script_path = os.path.abspath(__file__)
parent_folder_path = os.path.dirname(os.path.dirname(current_script_path))
import torchvision.transforms as transforms
# Add the parent folder to sys.path
sys.path.append(parent_folder_path)
def icnr(x, scale=2, init=nn.init.kaiming_normal_):
"""
Checkerboard artifact free sub-pixel convolution
https://arxiv.org/abs/1707.02937
"""
ni,nf,h,w = x.shape
ni2 = int(ni/(scale**2))
k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1)
k = k.contiguous().view(ni2, nf, -1)
k = k.repeat(1, 1, scale**2)
k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1)
x.data.copy_(k)
class PixelShuffle(nn.Module):
"""
Real-Time Single Image and Video Super-Resolution
https://arxiv.org/abs/1609.05158
"""
def __init__(self, n_channels, scale):
super(PixelShuffle, self).__init__()
self.conv = nn.Conv2d(n_channels, n_channels*(scale**2), kernel_size=1)
icnr(self.conv.weight)
self.shuf = nn.PixelShuffle(scale)
self.relu = nn.ReLU()
def forward(self,x):
x = self.shuf(self.relu(self.conv(x)))
return x
class AttentionModule(nn.Module):
def __init__(self, in_channels, out_channels):
super(AttentionModule, self).__init__()
# Convolutional Layers
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
# Group Normalization
self.group_norm = nn.GroupNorm(20, out_channels)
# ReLU Activation
self.relu = nn.ReLU()
# Spatial Attention
self.spatial_attention = nn.Sequential(
nn.Conv2d(in_channels, 1, kernel_size=1),
nn.Sigmoid()
)
def forward(self, x):
# Apply spatial attention
spatial_attention = self.spatial_attention(x)
x = x * spatial_attention
# Apply convolutional layer
x = self.conv1(x)
x = self.group_norm(x)
x = self.relu(x)
return x
class AttentionDownsamplingModule(nn.Module):
def __init__(self, in_channels, out_channels, scale_factor=2):
super(AttentionDownsamplingModule, self).__init__()
# Spatial Attention
self.spatial_attention = nn.Sequential(
nn.Conv2d(in_channels, 1, kernel_size=1),
nn.Sigmoid()
)
# Channel Attention
self.channel_attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, in_channels // 8, kernel_size=1),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels // 8, in_channels, kernel_size=1),
nn.Sigmoid()
)
# Convolutional Layers
if scale_factor == 2:
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
elif scale_factor == 4:
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1)
# Group Normalization
self.group_norm = nn.GroupNorm(20, out_channels)
# ReLU Activation
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
# Apply spatial attention
spatial_attention = self.spatial_attention(x)
x = x * spatial_attention
# Apply channel attention
channel_attention = self.channel_attention(x)
x = x * channel_attention
# Apply convolutional layers
x = self.conv1(x)
x = self.group_norm(x)
x = self.relu(x)
x = self.conv2(x)
x = self.group_norm(x)
x = self.relu(x)
return x
class AttentionUpsamplingModule(nn.Module):
def __init__(self, in_channels, out_channels):
super(AttentionUpsamplingModule, self).__init__()
# Spatial Attention for outs[2]
self.spatial_attention = nn.Sequential(
nn.Conv2d(in_channels, 1, kernel_size=1),
nn.Sigmoid()
)
# Channel Attention for outs[2]
self.channel_attention = nn.Sequential(
nn.AdaptiveAvgPool2d(1),
nn.Conv2d(in_channels, in_channels // 8, kernel_size=1),
nn.ReLU(),
nn.Conv2d(in_channels // 8, in_channels, kernel_size=1),
nn.Sigmoid()
)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
# Group Normalization
self.group_norm = nn.GroupNorm(20, out_channels)
# ReLU Activation
self.relu = nn.ReLU()
self.upscale = PixelShuffle(in_channels, 2)
def forward(self, x):
# Apply spatial attention
spatial_attention = self.spatial_attention(x)
x = x * spatial_attention
# Apply channel attention
channel_attention = self.channel_attention(x)
x = x * channel_attention
# Apply convolutional layers
x = self.conv1(x)
x = self.group_norm(x)
x = self.relu(x)
x = self.conv2(x)
x = self.group_norm(x)
x = self.relu(x)
# Upsample
x = self.upscale(x)
return x
class ConvLayer(nn.Module):
def __init__(self, in_channels, out_channels):
super(ConvLayer, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels, out_channels, 1),
nn.GroupNorm(20, out_channels),
nn.ReLU(),
)
def forward(self, x):
x = self.conv1(x)
return x
class InverseMultiAttentiveFeatureRefinement(nn.Module):
def __init__(self, in_channels_list):
super(InverseMultiAttentiveFeatureRefinement, self).__init__()
self.layer1 = AttentionModule(in_channels_list[0], in_channels_list[0])
self.layer2 = AttentionDownsamplingModule(in_channels_list[0], in_channels_list[0]//2, scale_factor = 2)
self.layer3 = ConvLayer(in_channels_list[0]//2 + in_channels_list[1], in_channels_list[1])
self.layer4 = AttentionDownsamplingModule(in_channels_list[1], in_channels_list[1]//2, scale_factor = 2)
self.layer5 = ConvLayer(in_channels_list[1]//2 + in_channels_list[2], in_channels_list[2])
self.layer6 = AttentionDownsamplingModule(in_channels_list[2], in_channels_list[2]//2, scale_factor = 2)
self.layer7 = ConvLayer(in_channels_list[2]//2 + in_channels_list[3], in_channels_list[3])
'''
self.layer8 = AttentionUpsamplingModule(in_channels_list[3], in_channels_list[3])
self.layer9 = ConvLayer(in_channels_list[2] + in_channels_list[3], in_channels_list[2])
self.layer10 = AttentionUpsamplingModule(in_channels_list[2], in_channels_list[2])
self.layer11 = ConvLayer(in_channels_list[1] + in_channels_list[2], in_channels_list[1])
self.layer12 = AttentionUpsamplingModule(in_channels_list[1], in_channels_list[1])
self.layer13 = ConvLayer(in_channels_list[0] + in_channels_list[1], in_channels_list[0])
'''
def forward(self, inputs):
x_c4, x_c3, x_c2, x_c1 = inputs
x_c4 = self.layer1(x_c4)
x_c4_3 = self.layer2(x_c4)
x_c3 = torch.cat([x_c4_3, x_c3], dim=1)
x_c3 = self.layer3(x_c3)
x_c3_2 = self.layer4(x_c3)
x_c2 = torch.cat([x_c3_2, x_c2], dim=1)
x_c2 = self.layer5(x_c2)
x_c2_1 = self.layer6(x_c2)
x_c1 = torch.cat([x_c2_1, x_c1], dim=1)
x_c1 = self.layer7(x_c1)
'''
x_c1_2 = self.layer8(x_c1)
x_c2 = torch.cat([x_c1_2, x_c2], dim=1)
x_c2 = self.layer9(x_c2)
x_c2_3 = self.layer10(x_c2)
x_c3 = torch.cat([x_c2_3, x_c3], dim=1)
x_c3 = self.layer11(x_c3)
x_c3_4 = self.layer12(x_c3)
x_c4 = torch.cat([x_c3_4, x_c4], dim=1)
x_c4 = self.layer13(x_c4)
'''
return [x_c4, x_c3, x_c2, x_c1]
class EVPDepthEncoder(nn.Module):
def __init__(self, out_dim=1024, ldm_prior=[320, 680, 1320+1280], sd_path=None, text_dim=768,
dataset='nyu', caption_aggregation=False
):
super().__init__()
self.layer1 = nn.Sequential(
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1),
nn.GroupNorm(16, ldm_prior[0]),
nn.ReLU(),
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1),
)
self.layer2 = nn.Sequential(
nn.Conv2d(ldm_prior[1], ldm_prior[1], 3, stride=2, padding=1),
)
self.out_layer = nn.Sequential(
nn.Conv2d(sum(ldm_prior), out_dim, 1),
nn.GroupNorm(16, out_dim),
nn.ReLU(),
)
self.aggregation = InverseMultiAttentiveFeatureRefinement([320, 680, 1320, 1280])
self.apply(self._init_weights)
### stable diffusion layers
config = OmegaConf.load('./v1-inference.yaml')
if sd_path is None:
if os.path.exists('../checkpoints/v1-5-pruned-emaonly.ckpt'):
config.model.params.ckpt_path = '../checkpoints/v1-5-pruned-emaonly.ckpt'
else:
config.model.params.ckpt_path = None
else:
config.model.params.ckpt_path = f'../{sd_path}'
sd_model = instantiate_from_config(config.model)
self.encoder_vq = sd_model.first_stage_model
self.unet = UNetWrapper(sd_model.model, use_attn=True)
if dataset == 'kitti':
self.unet = UNetWrapper(sd_model.model, use_attn=True, base_size=384)
del sd_model.cond_stage_model
del self.encoder_vq.decoder
del self.unet.unet.diffusion_model.out
del self.encoder_vq.post_quant_conv.weight
del self.encoder_vq.post_quant_conv.bias
for param in self.encoder_vq.parameters():
param.requires_grad = True
self.text_adapter = TextAdapterRefer(text_dim=text_dim)
self.alpha = nn.Parameter(torch.ones(text_dim) * 1e-4)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if caption_aggregation:
class_embeddings = torch.load(f'{dataset}_class_embeddings_my_captions.pth', map_location=device)
#class_embeddings_list = [value['class_embeddings'] for key, value in class_embeddings.items()]
#stacked_embeddings = torch.stack(class_embeddings_list, dim=0)
#class_embeddings = torch.mean(stacked_embeddings, dim=0).unsqueeze(0)
if 'aggregated' in class_embeddings:
class_embeddings = class_embeddings['aggregated']
else:
clip_model = FrozenCLIPEmbedder(max_length=40,pool=False).to(device)
class_embeddings_new = [clip_model.encode(value['caption'][0]) for key, value in class_embeddings.items()]
class_embeddings_new = torch.mean(torch.stack(class_embeddings_new, dim=0), dim=0)
class_embeddings['aggregated'] = class_embeddings_new
torch.save(class_embeddings, f'{dataset}_class_embeddings_my_captions.pth')
class_embeddings = class_embeddings['aggregated']
self.register_buffer('class_embeddings', class_embeddings)
else:
self.class_embeddings = torch.load(f'{dataset}_class_embeddings_my_captions.pth', map_location=device)
self.clip_model = FrozenCLIPEmbedder(max_length=40,pool=False)
for param in self.clip_model.parameters():
param.requires_grad = True
#if dataset == 'kitti':
# self.text_adapter_ = TextAdapterRefer(text_dim=text_dim)
# self.gamma_ = nn.Parameter(torch.ones(text_dim) * 1e-4)
self.caption_aggregation = caption_aggregation
self.dataset = dataset
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
nn.init.constant_(m.bias, 0)
def forward_features(self, feats):
x = self.ldm_to_net[0](feats[0])
for i in range(3):
if i > 0:
x = x + self.ldm_to_net[i](feats[i])
x = self.layers[i](x)
x = self.upsample_layers[i](x)
return self.out_conv(x)
def forward(self, x, class_ids=None, img_paths=None):
latents = self.encoder_vq.encode(x).mode()
# add division by std
if self.dataset == 'nyu':
latents = latents / 5.07543
elif self.dataset == 'kitti':
latents = latents / 4.6211
else:
print('Please calculate the STD for the dataset!')
if class_ids is not None:
if self.caption_aggregation:
class_embeddings = self.class_embeddings[[0]*len(class_ids.tolist())]#[class_ids.tolist()]
else:
class_embeddings = []
for img_path in img_paths:
class_embeddings.extend([value['caption'][0] for key, value in self.class_embeddings.items() if key in img_path.replace('//', '/')])
class_embeddings = self.clip_model.encode(class_embeddings)
else:
class_embeddings = self.class_embeddings
c_crossattn = self.text_adapter(latents, class_embeddings, self.alpha)
t = torch.ones((x.shape[0],), device=x.device).long()
#if self.dataset == 'kitti':
# c_crossattn_last = self.text_adapter_(latents, class_embeddings, self.gamma_)
# outs = self.unet(latents, t, c_crossattn=[c_crossattn, c_crossattn_last])
#else:
outs = self.unet(latents, t, c_crossattn=[c_crossattn])
outs = self.aggregation(outs)
feats = [outs[0], outs[1], torch.cat([outs[2], F.interpolate(outs[3], scale_factor=2)], dim=1)]
x = torch.cat([self.layer1(feats[0]), self.layer2(feats[1]), feats[2]], dim=1)
return self.out_layer(x)
def get_latent(self, x):
return self.encoder_vq.encode(x).mode()
class EVPDepth(PreTrainedModel):
config_class = EVPConfig
def __init__(self, config, caption_aggregation=True):
super().__init__(config)
args = config
self.max_depth = args.max_depth
self.min_depth = args.min_depth_eval
embed_dim = 192
channels_in = embed_dim*8
channels_out = embed_dim
if args.dataset == 'nyudepthv2':
self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='nyu', caption_aggregation=caption_aggregation)
else:
self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='kitti', caption_aggregation=caption_aggregation)
self.decoder = Decoder(channels_in, channels_out, args)
self.decoder.init_weights()
self.mViT = False
self.custom = False
if not self.mViT and not self.custom:
n_bins = 64
bin_embedding_dim = 128
num_out_features = [32, 32, 32, 192]
min_temp = 0.0212
max_temp = 50
btlnck_features = 256
n_attractors = [16, 8, 4, 1]
attractor_alpha = 1000
attractor_gamma = 2
attractor_kind = "mean"
attractor_type = "inv"
self.bin_centers_type = "softplus"
self.bottle_neck = nn.Sequential(
nn.Conv2d(channels_in, btlnck_features, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(btlnck_features, btlnck_features, kernel_size=3, stride=1, padding=1))
for m in self.bottle_neck.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001, bias=0)
SeedBinRegressorLayer = SeedBinRegressorUnnormed
Attractor = AttractorLayerUnnormed
self.seed_bin_regressor = SeedBinRegressorLayer(
btlnck_features, n_bins=n_bins, min_depth=self.min_depth, max_depth=self.max_depth)
self.seed_projector = Projector(btlnck_features, bin_embedding_dim)
self.projectors = nn.ModuleList([
Projector(num_out, bin_embedding_dim)
for num_out in num_out_features
])
self.attractors = nn.ModuleList([
Attractor(bin_embedding_dim, n_bins, n_attractors=n_attractors[i], min_depth=self.min_depth, max_depth=self.max_depth,
alpha=attractor_alpha, gamma=attractor_gamma, kind=attractor_kind, attractor_type=attractor_type)
for i in range(len(num_out_features))
])
last_in = 192 + 1
self.conditional_log_binomial = ConditionalLogBinomial(
last_in, bin_embedding_dim, n_classes=n_bins, min_temp=min_temp, max_temp=max_temp)
elif self.mViT and not self.custom:
n_bins = 256
self.adaptive_bins_layer = mViT(192, n_query_channels=192, patch_size=16,
dim_out=n_bins,
embedding_dim=192, norm='linear')
self.conv_out = nn.Sequential(nn.Conv2d(192, n_bins, kernel_size=1, stride=1, padding=0),
nn.Softmax(dim=1))
def forward(self, image, class_ids=None, img_paths=None):
#image = transform(image).unsqueeze(0)
shape = image.shape
image = torch.nn.functional.interpolate(image, (440,480), mode='bilinear', align_corners=True)
x = F.pad(image, (0, 0, 40, 0))
b, c, h, w = x.shape
x = x*2.0 - 1.0 # normalize to [-1, 1]
if h == 480 and w == 480:
new_x = torch.zeros(b, c, 512, 512, device=x.device)
new_x[:, :, 0:480, 0:480] = x
x = new_x
elif h==352 and w==352:
new_x = torch.zeros(b, c, 384, 384, device=x.device)
new_x[:, :, 0:352, 0:352] = x
x = new_x
elif h == 512 and w == 512:
pass
else:
print(h,w)
raise NotImplementedError
conv_feats = self.encoder(x, class_ids, img_paths)
if h == 480 or h == 352:
conv_feats = conv_feats[:, :, :-1, :-1]
self.decoder.remove_hooks()
out_depth, out, x_blocks = self.decoder([conv_feats])
if not self.mViT and not self.custom:
x = self.bottle_neck(conv_feats)
_, seed_b_centers = self.seed_bin_regressor(x)
if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2':
b_prev = (seed_b_centers - self.min_depth) / \
(self.max_depth - self.min_depth)
else:
b_prev = seed_b_centers
prev_b_embedding = self.seed_projector(x)
for projector, attractor, x in zip(self.projectors, self.attractors, x_blocks):
b_embedding = projector(x)
b, b_centers = attractor(
b_embedding, b_prev, prev_b_embedding, interpolate=True)
b_prev = b.clone()
prev_b_embedding = b_embedding.clone()
rel_cond = torch.sigmoid(out_depth) * self.max_depth
# concat rel depth with last. First interpolate rel depth to last size
rel_cond = nn.functional.interpolate(
rel_cond, size=out.shape[2:], mode='bilinear', align_corners=True)
last = torch.cat([out, rel_cond], dim=1)
b_embedding = nn.functional.interpolate(
b_embedding, last.shape[-2:], mode='bilinear', align_corners=True)
x = self.conditional_log_binomial(last, b_embedding)
# Now depth value is Sum px * cx , where cx are bin_centers from the last bin tensor
b_centers = nn.functional.interpolate(
b_centers, x.shape[-2:], mode='bilinear', align_corners=True)
out_depth = torch.sum(x * b_centers, dim=1, keepdim=True)
elif self.mViT and not self.custom:
bin_widths_normed, range_attention_maps = self.adaptive_bins_layer(out)
out = self.conv_out(range_attention_maps)
bin_widths = (self.max_depth - self.min_depth) * bin_widths_normed # .shape = N, dim_out
bin_widths = nn.functional.pad(bin_widths, (1, 0), mode='constant', value=self.min_depth)
bin_edges = torch.cumsum(bin_widths, dim=1)
centers = 0.5 * (bin_edges[:, :-1] + bin_edges[:, 1:])
n, dout = centers.size()
centers = centers.view(n, dout, 1, 1)
out_depth = torch.sum(out * centers, dim=1, keepdim=True)
else:
out_depth = torch.sigmoid(out_depth) * self.max_depth
pred = out_depth
pred = pred[:,:,40:,:]
pred = torch.nn.functional.interpolate(pred, shape[2:], mode='bilinear', align_corners=True)
pred_d_numpy = pred.squeeze().detach().cpu().numpy()
return pred_d_numpy
class Decoder(nn.Module):
def __init__(self, in_channels, out_channels, args):
super().__init__()
self.deconv = args.num_deconv
self.in_channels = in_channels
embed_dim = 192
channels_in = embed_dim*8
channels_out = embed_dim
self.deconv_layers, self.intermediate_results = self._make_deconv_layer(
args.num_deconv,
args.num_filters,
args.deconv_kernels,
)
self.last_layer_depth = nn.Sequential(
nn.Conv2d(channels_out, channels_out, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(channels_out, 1, kernel_size=3, stride=1, padding=1))
for m in self.last_layer_depth.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001, bias=0)
conv_layers = []
conv_layers.append(
build_conv_layer(
dict(type='Conv2d'),
in_channels=args.num_filters[-1],
out_channels=out_channels,
kernel_size=3,
stride=1,
padding=1))
conv_layers.append(
build_norm_layer(dict(type='BN'), out_channels)[1])
conv_layers.append(nn.ReLU())
self.conv_layers = nn.Sequential(*conv_layers)
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
def forward(self, conv_feats):
out = self.deconv_layers(conv_feats[0])
out = self.conv_layers(out)
out = self.up(out)
self.intermediate_results.append(out)
out = self.up(out)
out_depth = self.last_layer_depth(out)
return out_depth, out, self.intermediate_results
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
"""Make deconv layers."""
layers = []
in_planes = self.in_channels
intermediate_results = [] # List to store intermediate feature maps
for i in range(num_layers):
kernel, padding, output_padding = \
self._get_deconv_cfg(num_kernels[i])
planes = num_filters[i]
layers.append(
build_upsample_layer(
dict(type='deconv'),
in_channels=in_planes,
out_channels=planes,
kernel_size=kernel,
stride=2,
padding=padding,
output_padding=output_padding,
bias=False))
layers.append(nn.BatchNorm2d(planes))
layers.append(nn.ReLU())
in_planes = planes
# Add a hook to store the intermediate result
layers[-1].register_forward_hook(self._hook_fn(intermediate_results))
return nn.Sequential(*layers), intermediate_results
def _hook_fn(self, intermediate_results):
def hook(module, input, output):
intermediate_results.append(output)
return hook
def remove_hooks(self):
self.intermediate_results.clear()
def _get_deconv_cfg(self, deconv_kernel):
"""Get configurations for deconv layers."""
if deconv_kernel == 4:
padding = 1
output_padding = 0
elif deconv_kernel == 3:
padding = 1
output_padding = 1
elif deconv_kernel == 2:
padding = 0
output_padding = 0
else:
raise ValueError(f'Not supported num_kernels ({deconv_kernel}).')
return deconv_kernel, padding, output_padding
def init_weights(self):
"""Initialize model weights."""
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, std=0.001, bias=0)
elif isinstance(m, nn.BatchNorm2d):
constant_init(m, 1)
elif isinstance(m, nn.ConvTranspose2d):
normal_init(m, std=0.001)
|