|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
from timm.models.layers import trunc_normal_, DropPath |
|
from mmcv.cnn import (build_conv_layer, build_norm_layer, build_upsample_layer, |
|
constant_init, normal_init) |
|
from omegaconf import OmegaConf |
|
from ldm.util import instantiate_from_config |
|
import torch.nn.functional as F |
|
import sys |
|
import os |
|
current_script_path = os.path.abspath(__file__) |
|
parent_folder_path = os.path.dirname(os.path.dirname(current_script_path)) |
|
sys.path.append(parent_folder_path) |
|
parent_folder_path = os.path.dirname(parent_folder_path) |
|
print(parent_folder_path) |
|
|
|
sys.path.append(parent_folder_path) |
|
|
|
from .evpconfig import EVPConfig |
|
|
|
from .models import UNetWrapper, TextAdapterRefer, FrozenCLIPEmbedder |
|
from .miniViT import mViT |
|
from .attractor import AttractorLayer, AttractorLayerUnnormed |
|
from .dist_layers import ConditionalLogBinomial |
|
from .localbins_layers import (Projector, SeedBinRegressor, SeedBinRegressorUnnormed) |
|
import os |
|
from transformers import PreTrainedModel |
|
import sys |
|
current_script_path = os.path.abspath(__file__) |
|
parent_folder_path = os.path.dirname(os.path.dirname(current_script_path)) |
|
import torchvision.transforms as transforms |
|
|
|
|
|
sys.path.append(parent_folder_path) |
|
|
|
def icnr(x, scale=2, init=nn.init.kaiming_normal_): |
|
""" |
|
Checkerboard artifact free sub-pixel convolution |
|
https://arxiv.org/abs/1707.02937 |
|
""" |
|
ni,nf,h,w = x.shape |
|
ni2 = int(ni/(scale**2)) |
|
k = init(torch.zeros([ni2,nf,h,w])).transpose(0, 1) |
|
k = k.contiguous().view(ni2, nf, -1) |
|
k = k.repeat(1, 1, scale**2) |
|
k = k.contiguous().view([nf,ni,h,w]).transpose(0, 1) |
|
x.data.copy_(k) |
|
|
|
|
|
class PixelShuffle(nn.Module): |
|
""" |
|
Real-Time Single Image and Video Super-Resolution |
|
https://arxiv.org/abs/1609.05158 |
|
""" |
|
def __init__(self, n_channels, scale): |
|
super(PixelShuffle, self).__init__() |
|
self.conv = nn.Conv2d(n_channels, n_channels*(scale**2), kernel_size=1) |
|
icnr(self.conv.weight) |
|
self.shuf = nn.PixelShuffle(scale) |
|
self.relu = nn.ReLU() |
|
|
|
def forward(self,x): |
|
x = self.shuf(self.relu(self.conv(x))) |
|
return x |
|
|
|
|
|
class AttentionModule(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(AttentionModule, self).__init__() |
|
|
|
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.group_norm = nn.GroupNorm(20, out_channels) |
|
|
|
|
|
self.relu = nn.ReLU() |
|
|
|
|
|
self.spatial_attention = nn.Sequential( |
|
nn.Conv2d(in_channels, 1, kernel_size=1), |
|
nn.Sigmoid() |
|
) |
|
|
|
def forward(self, x): |
|
|
|
spatial_attention = self.spatial_attention(x) |
|
x = x * spatial_attention |
|
|
|
|
|
x = self.conv1(x) |
|
x = self.group_norm(x) |
|
x = self.relu(x) |
|
|
|
return x |
|
|
|
|
|
class AttentionDownsamplingModule(nn.Module): |
|
def __init__(self, in_channels, out_channels, scale_factor=2): |
|
super(AttentionDownsamplingModule, self).__init__() |
|
|
|
|
|
self.spatial_attention = nn.Sequential( |
|
nn.Conv2d(in_channels, 1, kernel_size=1), |
|
nn.Sigmoid() |
|
) |
|
|
|
|
|
self.channel_attention = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels, in_channels // 8, kernel_size=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(in_channels // 8, in_channels, kernel_size=1), |
|
nn.Sigmoid() |
|
) |
|
|
|
|
|
if scale_factor == 2: |
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
elif scale_factor == 4: |
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1) |
|
|
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=2, padding=1) |
|
|
|
|
|
self.group_norm = nn.GroupNorm(20, out_channels) |
|
|
|
|
|
self.relu = nn.ReLU(inplace=True) |
|
|
|
def forward(self, x): |
|
|
|
spatial_attention = self.spatial_attention(x) |
|
x = x * spatial_attention |
|
|
|
|
|
channel_attention = self.channel_attention(x) |
|
x = x * channel_attention |
|
|
|
|
|
x = self.conv1(x) |
|
x = self.group_norm(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.group_norm(x) |
|
x = self.relu(x) |
|
|
|
return x |
|
|
|
|
|
class AttentionUpsamplingModule(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(AttentionUpsamplingModule, self).__init__() |
|
|
|
|
|
self.spatial_attention = nn.Sequential( |
|
nn.Conv2d(in_channels, 1, kernel_size=1), |
|
nn.Sigmoid() |
|
) |
|
|
|
|
|
self.channel_attention = nn.Sequential( |
|
nn.AdaptiveAvgPool2d(1), |
|
nn.Conv2d(in_channels, in_channels // 8, kernel_size=1), |
|
nn.ReLU(), |
|
nn.Conv2d(in_channels // 8, in_channels, kernel_size=1), |
|
nn.Sigmoid() |
|
) |
|
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) |
|
|
|
|
|
self.group_norm = nn.GroupNorm(20, out_channels) |
|
|
|
|
|
self.relu = nn.ReLU() |
|
self.upscale = PixelShuffle(in_channels, 2) |
|
|
|
def forward(self, x): |
|
|
|
spatial_attention = self.spatial_attention(x) |
|
x = x * spatial_attention |
|
|
|
|
|
channel_attention = self.channel_attention(x) |
|
x = x * channel_attention |
|
|
|
|
|
x = self.conv1(x) |
|
x = self.group_norm(x) |
|
x = self.relu(x) |
|
x = self.conv2(x) |
|
x = self.group_norm(x) |
|
x = self.relu(x) |
|
|
|
|
|
x = self.upscale(x) |
|
|
|
return x |
|
|
|
|
|
class ConvLayer(nn.Module): |
|
def __init__(self, in_channels, out_channels): |
|
super(ConvLayer, self).__init__() |
|
|
|
self.conv1 = nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, 1), |
|
nn.GroupNorm(20, out_channels), |
|
nn.ReLU(), |
|
) |
|
|
|
def forward(self, x): |
|
x = self.conv1(x) |
|
|
|
return x |
|
|
|
|
|
class InverseMultiAttentiveFeatureRefinement(nn.Module): |
|
def __init__(self, in_channels_list): |
|
super(InverseMultiAttentiveFeatureRefinement, self).__init__() |
|
|
|
self.layer1 = AttentionModule(in_channels_list[0], in_channels_list[0]) |
|
self.layer2 = AttentionDownsamplingModule(in_channels_list[0], in_channels_list[0]//2, scale_factor = 2) |
|
self.layer3 = ConvLayer(in_channels_list[0]//2 + in_channels_list[1], in_channels_list[1]) |
|
self.layer4 = AttentionDownsamplingModule(in_channels_list[1], in_channels_list[1]//2, scale_factor = 2) |
|
self.layer5 = ConvLayer(in_channels_list[1]//2 + in_channels_list[2], in_channels_list[2]) |
|
self.layer6 = AttentionDownsamplingModule(in_channels_list[2], in_channels_list[2]//2, scale_factor = 2) |
|
self.layer7 = ConvLayer(in_channels_list[2]//2 + in_channels_list[3], in_channels_list[3]) |
|
|
|
''' |
|
self.layer8 = AttentionUpsamplingModule(in_channels_list[3], in_channels_list[3]) |
|
self.layer9 = ConvLayer(in_channels_list[2] + in_channels_list[3], in_channels_list[2]) |
|
self.layer10 = AttentionUpsamplingModule(in_channels_list[2], in_channels_list[2]) |
|
self.layer11 = ConvLayer(in_channels_list[1] + in_channels_list[2], in_channels_list[1]) |
|
self.layer12 = AttentionUpsamplingModule(in_channels_list[1], in_channels_list[1]) |
|
self.layer13 = ConvLayer(in_channels_list[0] + in_channels_list[1], in_channels_list[0]) |
|
''' |
|
def forward(self, inputs): |
|
x_c4, x_c3, x_c2, x_c1 = inputs |
|
x_c4 = self.layer1(x_c4) |
|
x_c4_3 = self.layer2(x_c4) |
|
x_c3 = torch.cat([x_c4_3, x_c3], dim=1) |
|
x_c3 = self.layer3(x_c3) |
|
x_c3_2 = self.layer4(x_c3) |
|
x_c2 = torch.cat([x_c3_2, x_c2], dim=1) |
|
x_c2 = self.layer5(x_c2) |
|
x_c2_1 = self.layer6(x_c2) |
|
x_c1 = torch.cat([x_c2_1, x_c1], dim=1) |
|
x_c1 = self.layer7(x_c1) |
|
''' |
|
x_c1_2 = self.layer8(x_c1) |
|
x_c2 = torch.cat([x_c1_2, x_c2], dim=1) |
|
x_c2 = self.layer9(x_c2) |
|
x_c2_3 = self.layer10(x_c2) |
|
x_c3 = torch.cat([x_c2_3, x_c3], dim=1) |
|
x_c3 = self.layer11(x_c3) |
|
x_c3_4 = self.layer12(x_c3) |
|
x_c4 = torch.cat([x_c3_4, x_c4], dim=1) |
|
x_c4 = self.layer13(x_c4) |
|
''' |
|
return [x_c4, x_c3, x_c2, x_c1] |
|
|
|
|
|
class EVPDepthEncoder(nn.Module): |
|
def __init__(self, out_dim=1024, ldm_prior=[320, 680, 1320+1280], sd_path=None, text_dim=768, |
|
dataset='nyu', caption_aggregation=False |
|
): |
|
super().__init__() |
|
|
|
|
|
self.layer1 = nn.Sequential( |
|
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1), |
|
nn.GroupNorm(16, ldm_prior[0]), |
|
nn.ReLU(), |
|
nn.Conv2d(ldm_prior[0], ldm_prior[0], 3, stride=2, padding=1), |
|
) |
|
|
|
self.layer2 = nn.Sequential( |
|
nn.Conv2d(ldm_prior[1], ldm_prior[1], 3, stride=2, padding=1), |
|
) |
|
|
|
self.out_layer = nn.Sequential( |
|
nn.Conv2d(sum(ldm_prior), out_dim, 1), |
|
nn.GroupNorm(16, out_dim), |
|
nn.ReLU(), |
|
) |
|
|
|
self.aggregation = InverseMultiAttentiveFeatureRefinement([320, 680, 1320, 1280]) |
|
|
|
self.apply(self._init_weights) |
|
|
|
|
|
|
|
config = OmegaConf.load('./v1-inference.yaml') |
|
if sd_path is None: |
|
if os.path.exists('../checkpoints/v1-5-pruned-emaonly.ckpt'): |
|
config.model.params.ckpt_path = '../checkpoints/v1-5-pruned-emaonly.ckpt' |
|
else: |
|
config.model.params.ckpt_path = None |
|
else: |
|
config.model.params.ckpt_path = f'../{sd_path}' |
|
|
|
sd_model = instantiate_from_config(config.model) |
|
self.encoder_vq = sd_model.first_stage_model |
|
|
|
self.unet = UNetWrapper(sd_model.model, use_attn=True) |
|
if dataset == 'kitti': |
|
self.unet = UNetWrapper(sd_model.model, use_attn=True, base_size=384) |
|
|
|
del sd_model.cond_stage_model |
|
del self.encoder_vq.decoder |
|
del self.unet.unet.diffusion_model.out |
|
del self.encoder_vq.post_quant_conv.weight |
|
del self.encoder_vq.post_quant_conv.bias |
|
|
|
for param in self.encoder_vq.parameters(): |
|
param.requires_grad = True |
|
|
|
self.text_adapter = TextAdapterRefer(text_dim=text_dim) |
|
self.gamma = nn.Parameter(torch.ones(text_dim) * 1e-4) |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
if caption_aggregation: |
|
class_embeddings = torch.load(f'{dataset}_class_embeddings_my_captions.pth', map_location=device) |
|
|
|
|
|
|
|
|
|
if 'aggregated' in class_embeddings: |
|
class_embeddings = class_embeddings['aggregated'] |
|
else: |
|
clip_model = FrozenCLIPEmbedder(max_length=40,pool=False).to(device) |
|
class_embeddings_new = [clip_model.encode(value['caption'][0]) for key, value in class_embeddings.items()] |
|
class_embeddings_new = torch.mean(torch.stack(class_embeddings_new, dim=0), dim=0) |
|
class_embeddings['aggregated'] = class_embeddings_new |
|
torch.save(class_embeddings, f'{dataset}_class_embeddings_my_captions.pth') |
|
class_embeddings = class_embeddings['aggregated'] |
|
self.register_buffer('class_embeddings', class_embeddings) |
|
else: |
|
self.class_embeddings = torch.load(f'{dataset}_class_embeddings_my_captions.pth', map_location=device) |
|
|
|
self.clip_model = FrozenCLIPEmbedder(max_length=40,pool=False) |
|
for param in self.clip_model.parameters(): |
|
param.requires_grad = True |
|
|
|
|
|
|
|
|
|
|
|
self.caption_aggregation = caption_aggregation |
|
self.dataset = dataset |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, (nn.Conv2d, nn.Linear)): |
|
trunc_normal_(m.weight, std=.02) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
def forward_features(self, feats): |
|
x = self.ldm_to_net[0](feats[0]) |
|
for i in range(3): |
|
if i > 0: |
|
x = x + self.ldm_to_net[i](feats[i]) |
|
x = self.layers[i](x) |
|
x = self.upsample_layers[i](x) |
|
return self.out_conv(x) |
|
|
|
def forward(self, x, class_ids=None, img_paths=None): |
|
latents = self.encoder_vq.encode(x).mode() |
|
|
|
|
|
if self.dataset == 'nyu': |
|
latents = latents / 5.07543 |
|
elif self.dataset == 'kitti': |
|
latents = latents / 4.6211 |
|
else: |
|
print('Please calculate the STD for the dataset!') |
|
|
|
if class_ids is not None: |
|
if self.caption_aggregation: |
|
class_embeddings = self.class_embeddings[[0]*len(class_ids.tolist())] |
|
else: |
|
class_embeddings = [] |
|
|
|
for img_path in img_paths: |
|
class_embeddings.extend([value['caption'][0] for key, value in self.class_embeddings.items() if key in img_path.replace('//', '/')]) |
|
|
|
class_embeddings = self.clip_model.encode(class_embeddings) |
|
else: |
|
class_embeddings = self.class_embeddings |
|
|
|
c_crossattn = self.text_adapter(latents, class_embeddings, self.gamma) |
|
t = torch.ones((x.shape[0],), device=x.device).long() |
|
|
|
|
|
|
|
|
|
|
|
outs = self.unet(latents, t, c_crossattn=[c_crossattn]) |
|
outs = self.aggregation(outs) |
|
|
|
feats = [outs[0], outs[1], torch.cat([outs[2], F.interpolate(outs[3], scale_factor=2)], dim=1)] |
|
x = torch.cat([self.layer1(feats[0]), self.layer2(feats[1]), feats[2]], dim=1) |
|
return self.out_layer(x) |
|
|
|
def get_latent(self, x): |
|
return self.encoder_vq.encode(x).mode() |
|
|
|
|
|
class EVPDepth(PreTrainedModel): |
|
config_class = EVPConfig |
|
def __init__(self, config, caption_aggregation=True): |
|
super().__init__(config) |
|
args = config |
|
self.max_depth = args.max_depth |
|
self.min_depth = args.min_depth_eval |
|
|
|
embed_dim = 192 |
|
|
|
channels_in = embed_dim*8 |
|
channels_out = embed_dim |
|
|
|
if args.dataset == 'nyudepthv2': |
|
self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='nyu', caption_aggregation=caption_aggregation) |
|
else: |
|
self.encoder = EVPDepthEncoder(out_dim=channels_in, dataset='kitti', caption_aggregation=caption_aggregation) |
|
|
|
self.decoder = Decoder(channels_in, channels_out, args) |
|
self.decoder.init_weights() |
|
self.mViT = False |
|
self.custom = False |
|
|
|
|
|
if not self.mViT and not self.custom: |
|
n_bins = 64 |
|
bin_embedding_dim = 128 |
|
num_out_features = [32, 32, 32, 192] |
|
min_temp = 0.0212 |
|
max_temp = 50 |
|
btlnck_features = 256 |
|
n_attractors = [16, 8, 4, 1] |
|
attractor_alpha = 1000 |
|
attractor_gamma = 2 |
|
attractor_kind = "mean" |
|
attractor_type = "inv" |
|
self.bin_centers_type = "softplus" |
|
|
|
self.bottle_neck = nn.Sequential( |
|
nn.Conv2d(channels_in, btlnck_features, kernel_size=3, stride=1, padding=1), |
|
nn.ReLU(inplace=False), |
|
nn.Conv2d(btlnck_features, btlnck_features, kernel_size=3, stride=1, padding=1)) |
|
|
|
|
|
for m in self.bottle_neck.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
normal_init(m, std=0.001, bias=0) |
|
|
|
|
|
SeedBinRegressorLayer = SeedBinRegressorUnnormed |
|
Attractor = AttractorLayerUnnormed |
|
self.seed_bin_regressor = SeedBinRegressorLayer( |
|
btlnck_features, n_bins=n_bins, min_depth=self.min_depth, max_depth=self.max_depth) |
|
self.seed_projector = Projector(btlnck_features, bin_embedding_dim) |
|
self.projectors = nn.ModuleList([ |
|
Projector(num_out, bin_embedding_dim) |
|
for num_out in num_out_features |
|
]) |
|
self.attractors = nn.ModuleList([ |
|
Attractor(bin_embedding_dim, n_bins, n_attractors=n_attractors[i], min_depth=self.min_depth, max_depth=self.max_depth, |
|
alpha=attractor_alpha, gamma=attractor_gamma, kind=attractor_kind, attractor_type=attractor_type) |
|
for i in range(len(num_out_features)) |
|
]) |
|
|
|
last_in = 192 + 1 |
|
self.conditional_log_binomial = ConditionalLogBinomial( |
|
last_in, bin_embedding_dim, n_classes=n_bins, min_temp=min_temp, max_temp=max_temp) |
|
elif self.mViT and not self.custom: |
|
n_bins = 256 |
|
self.adaptive_bins_layer = mViT(192, n_query_channels=192, patch_size=16, |
|
dim_out=n_bins, |
|
embedding_dim=192, norm='linear') |
|
self.conv_out = nn.Sequential(nn.Conv2d(192, n_bins, kernel_size=1, stride=1, padding=0), |
|
nn.Softmax(dim=1)) |
|
|
|
|
|
def forward(self, image, class_ids=None, img_paths=None): |
|
|
|
|
|
shape = image.shape |
|
image = torch.nn.functional.interpolate(image, (440,480), mode='bilinear', align_corners=True) |
|
x = F.pad(image, (0, 0, 40, 0)) |
|
|
|
b, c, h, w = x.shape |
|
x = x*2.0 - 1.0 |
|
if h == 480 and w == 480: |
|
new_x = torch.zeros(b, c, 512, 512, device=x.device) |
|
new_x[:, :, 0:480, 0:480] = x |
|
x = new_x |
|
elif h==352 and w==352: |
|
new_x = torch.zeros(b, c, 384, 384, device=x.device) |
|
new_x[:, :, 0:352, 0:352] = x |
|
x = new_x |
|
elif h == 512 and w == 512: |
|
pass |
|
else: |
|
print(h,w) |
|
raise NotImplementedError |
|
conv_feats = self.encoder(x, class_ids, img_paths) |
|
|
|
if h == 480 or h == 352: |
|
conv_feats = conv_feats[:, :, :-1, :-1] |
|
|
|
self.decoder.remove_hooks() |
|
out_depth, out, x_blocks = self.decoder([conv_feats]) |
|
|
|
if not self.mViT and not self.custom: |
|
x = self.bottle_neck(conv_feats) |
|
_, seed_b_centers = self.seed_bin_regressor(x) |
|
|
|
if self.bin_centers_type == 'normed' or self.bin_centers_type == 'hybrid2': |
|
b_prev = (seed_b_centers - self.min_depth) / \ |
|
(self.max_depth - self.min_depth) |
|
else: |
|
b_prev = seed_b_centers |
|
|
|
prev_b_embedding = self.seed_projector(x) |
|
|
|
for projector, attractor, x in zip(self.projectors, self.attractors, x_blocks): |
|
b_embedding = projector(x) |
|
b, b_centers = attractor( |
|
b_embedding, b_prev, prev_b_embedding, interpolate=True) |
|
b_prev = b.clone() |
|
prev_b_embedding = b_embedding.clone() |
|
|
|
rel_cond = torch.sigmoid(out_depth) * self.max_depth |
|
|
|
|
|
rel_cond = nn.functional.interpolate( |
|
rel_cond, size=out.shape[2:], mode='bilinear', align_corners=True) |
|
last = torch.cat([out, rel_cond], dim=1) |
|
|
|
b_embedding = nn.functional.interpolate( |
|
b_embedding, last.shape[-2:], mode='bilinear', align_corners=True) |
|
x = self.conditional_log_binomial(last, b_embedding) |
|
|
|
|
|
b_centers = nn.functional.interpolate( |
|
b_centers, x.shape[-2:], mode='bilinear', align_corners=True) |
|
out_depth = torch.sum(x * b_centers, dim=1, keepdim=True) |
|
|
|
elif self.mViT and not self.custom: |
|
bin_widths_normed, range_attention_maps = self.adaptive_bins_layer(out) |
|
out = self.conv_out(range_attention_maps) |
|
|
|
bin_widths = (self.max_depth - self.min_depth) * bin_widths_normed |
|
bin_widths = nn.functional.pad(bin_widths, (1, 0), mode='constant', value=self.min_depth) |
|
bin_edges = torch.cumsum(bin_widths, dim=1) |
|
|
|
centers = 0.5 * (bin_edges[:, :-1] + bin_edges[:, 1:]) |
|
n, dout = centers.size() |
|
centers = centers.view(n, dout, 1, 1) |
|
|
|
out_depth = torch.sum(out * centers, dim=1, keepdim=True) |
|
else: |
|
out_depth = torch.sigmoid(out_depth) * self.max_depth |
|
|
|
pred = out_depth |
|
pred = pred[:,:,40:,:] |
|
pred = torch.nn.functional.interpolate(pred, shape[2:], mode='bilinear', align_corners=True) |
|
pred_d_numpy = pred.squeeze().detach().cpu().numpy() |
|
|
|
return pred_d_numpy |
|
|
|
|
|
class Decoder(nn.Module): |
|
def __init__(self, in_channels, out_channels, args): |
|
super().__init__() |
|
self.deconv = args.num_deconv |
|
self.in_channels = in_channels |
|
|
|
embed_dim = 192 |
|
|
|
channels_in = embed_dim*8 |
|
channels_out = embed_dim |
|
|
|
self.deconv_layers, self.intermediate_results = self._make_deconv_layer( |
|
args.num_deconv, |
|
args.num_filters, |
|
args.deconv_kernels, |
|
) |
|
self.last_layer_depth = nn.Sequential( |
|
nn.Conv2d(channels_out, channels_out, kernel_size=3, stride=1, padding=1), |
|
nn.ReLU(inplace=False), |
|
nn.Conv2d(channels_out, 1, kernel_size=3, stride=1, padding=1)) |
|
|
|
for m in self.last_layer_depth.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
normal_init(m, std=0.001, bias=0) |
|
|
|
conv_layers = [] |
|
conv_layers.append( |
|
build_conv_layer( |
|
dict(type='Conv2d'), |
|
in_channels=args.num_filters[-1], |
|
out_channels=out_channels, |
|
kernel_size=3, |
|
stride=1, |
|
padding=1)) |
|
conv_layers.append( |
|
build_norm_layer(dict(type='BN'), out_channels)[1]) |
|
conv_layers.append(nn.ReLU()) |
|
self.conv_layers = nn.Sequential(*conv_layers) |
|
|
|
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False) |
|
|
|
def forward(self, conv_feats): |
|
out = self.deconv_layers(conv_feats[0]) |
|
out = self.conv_layers(out) |
|
out = self.up(out) |
|
self.intermediate_results.append(out) |
|
out = self.up(out) |
|
out_depth = self.last_layer_depth(out) |
|
|
|
return out_depth, out, self.intermediate_results |
|
|
|
def _make_deconv_layer(self, num_layers, num_filters, num_kernels): |
|
"""Make deconv layers.""" |
|
|
|
layers = [] |
|
in_planes = self.in_channels |
|
intermediate_results = [] |
|
|
|
for i in range(num_layers): |
|
kernel, padding, output_padding = \ |
|
self._get_deconv_cfg(num_kernels[i]) |
|
|
|
planes = num_filters[i] |
|
layers.append( |
|
build_upsample_layer( |
|
dict(type='deconv'), |
|
in_channels=in_planes, |
|
out_channels=planes, |
|
kernel_size=kernel, |
|
stride=2, |
|
padding=padding, |
|
output_padding=output_padding, |
|
bias=False)) |
|
layers.append(nn.BatchNorm2d(planes)) |
|
layers.append(nn.ReLU()) |
|
in_planes = planes |
|
|
|
|
|
layers[-1].register_forward_hook(self._hook_fn(intermediate_results)) |
|
|
|
return nn.Sequential(*layers), intermediate_results |
|
|
|
def _hook_fn(self, intermediate_results): |
|
def hook(module, input, output): |
|
intermediate_results.append(output) |
|
return hook |
|
|
|
def remove_hooks(self): |
|
self.intermediate_results.clear() |
|
|
|
def _get_deconv_cfg(self, deconv_kernel): |
|
"""Get configurations for deconv layers.""" |
|
if deconv_kernel == 4: |
|
padding = 1 |
|
output_padding = 0 |
|
elif deconv_kernel == 3: |
|
padding = 1 |
|
output_padding = 1 |
|
elif deconv_kernel == 2: |
|
padding = 0 |
|
output_padding = 0 |
|
else: |
|
raise ValueError(f'Not supported num_kernels ({deconv_kernel}).') |
|
|
|
return deconv_kernel, padding, output_padding |
|
|
|
def init_weights(self): |
|
"""Initialize model weights.""" |
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
normal_init(m, std=0.001, bias=0) |
|
elif isinstance(m, nn.BatchNorm2d): |
|
constant_init(m, 1) |
|
elif isinstance(m, nn.ConvTranspose2d): |
|
normal_init(m, std=0.001) |
|
|