evp_depth / models.py
MykolaL's picture
Upload EVPDepth
040604a verified
raw
history blame
11.6 kB
from omegaconf import OmegaConf
import torch as th
import torch
import math
import abc
from torch import nn, einsum
from einops import rearrange, repeat
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from transformers import CLIPTokenizer
from transformers.models.clip.modeling_clip import CLIPTextConfig, CLIPTextModel, CLIPTextTransformer#, _expand_mask
from inspect import isfunction
def exists(val):
return val is not None
def uniq(arr):
return{el: True for el in arr}.keys()
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def register_attention_control(model, controller):
def ca_forward(self, place_in_unet):
def forward(x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
is_cross = context is not None
context = default(context, x)
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
if exists(mask):
mask = rearrange(mask, 'b ... -> b (...)')
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, 'b j -> (b h) () j', h=h)
sim.masked_fill_(~mask, max_neg_value)
# attention, what we cannot get enough of
attn = sim.softmax(dim=-1)
attn2 = rearrange(attn, '(b h) k c -> h b k c', h=h).mean(0)
controller(attn2, is_cross, place_in_unet)
out = einsum('b i j, b j d -> b i d', attn, v)
out = rearrange(out, '(b h) n d -> b n (h d)', h=h)
return self.to_out(out)
return forward
class DummyController:
def __call__(self, *args):
return args[0]
def __init__(self):
self.num_att_layers = 0
if controller is None:
controller = DummyController()
def register_recr(net_, count, place_in_unet):
if net_.__class__.__name__ == 'CrossAttention':
net_.forward = ca_forward(net_, place_in_unet)
return count + 1
elif hasattr(net_, 'children'):
for net__ in net_.children():
count = register_recr(net__, count, place_in_unet)
return count
cross_att_count = 0
sub_nets = model.diffusion_model.named_children()
for net in sub_nets:
if "input_blocks" in net[0]:
cross_att_count += register_recr(net[1], 0, "down")
elif "output_blocks" in net[0]:
cross_att_count += register_recr(net[1], 0, "up")
elif "middle_block" in net[0]:
cross_att_count += register_recr(net[1], 0, "mid")
controller.num_att_layers = cross_att_count
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return 0
@abc.abstractmethod
def forward (self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
attn = self.forward(attn, is_cross, place_in_unet)
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= (self.max_size) ** 2: # avoid memory overhead
self.step_store[key].append(attn)
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item for item in self.step_store[key]] for key in self.step_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self, base_size=64, max_size=None):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
self.base_size = base_size
if max_size is None:
self.max_size = self.base_size // 2
else:
self.max_size = max_size
def register_hier_output(model):
self = model.diffusion_model
from ldm.modules.diffusionmodules.util import checkpoint, timestep_embedding
def forward(x, timesteps=None, context=None, y=None,**kwargs):
"""
Apply the model to an input batch.
:param x: an [N x C x ...] Tensor of inputs.
:param timesteps: a 1-D batch of timesteps.
:param context: conditioning plugged in via crossattn
:param y: an [N] Tensor of labels, if class-conditional.
:return: an [N x C x ...] Tensor of outputs.
"""
assert (y is not None) == (
self.num_classes is not None
), "must specify y if and only if the model is class-conditional"
hs = []
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
emb = self.time_embed(t_emb)
if self.num_classes is not None:
assert y.shape == (x.shape[0],)
emb = emb + self.label_emb(y)
h = x.type(self.dtype)
for module in self.input_blocks:
# import pdb; pdb.set_trace()
if context.shape[1]==2:
h = module(h, emb, context[:,0,:].unsqueeze(1))
else:
h = module(h, emb, context)
hs.append(h)
if context.shape[1]==2:
h = self.middle_block(h, emb, context[:,0,:].unsqueeze(1))
else:
h = self.middle_block(h, emb, context)
out_list = []
for i_out, module in enumerate(self.output_blocks):
h = th.cat([h, hs.pop()], dim=1)
if context.shape[1]==2:
h = module(h, emb, context[:,1,:].unsqueeze(1))
else:
h = module(h, emb, context)
if i_out in [1, 4, 7]:
out_list.append(h)
h = h.type(x.dtype)
out_list.append(h)
return out_list
self.forward = forward
class UNetWrapper(nn.Module):
def __init__(self, unet, use_attn=True, base_size=512, max_attn_size=None, attn_selector='up_cross+down_cross') -> None:
super().__init__()
self.unet = unet
self.attention_store = AttentionStore(base_size=base_size // 8, max_size=max_attn_size)
self.size16 = base_size // 32
self.size32 = base_size // 16
self.size64 = base_size // 8
self.use_attn = use_attn
if self.use_attn:
register_attention_control(unet, self.attention_store)
register_hier_output(unet)
self.attn_selector = attn_selector.split('+')
def forward(self, *args, **kwargs):
if self.use_attn:
self.attention_store.reset()
out_list = self.unet(*args, **kwargs)
if self.use_attn:
avg_attn = self.attention_store.get_average_attention()
attn16, attn32, attn64 = self.process_attn(avg_attn)
out_list[1] = torch.cat([out_list[1], attn16], dim=1)
out_list[2] = torch.cat([out_list[2], attn32], dim=1)
if attn64 is not None:
out_list[3] = torch.cat([out_list[3], attn64], dim=1)
return out_list[::-1]
def process_attn(self, avg_attn):
attns = {self.size16: [], self.size32: [], self.size64: []}
for k in self.attn_selector:
for up_attn in avg_attn[k]:
size = int(math.sqrt(up_attn.shape[1]))
attns[size].append(rearrange(up_attn, 'b (h w) c -> b c h w', h=size))
attn16 = torch.stack(attns[self.size16]).mean(0)
attn32 = torch.stack(attns[self.size32]).mean(0)
if len(attns[self.size64]) > 0:
attn64 = torch.stack(attns[self.size64]).mean(0)
else:
attn64 = None
return attn16, attn32, attn64
class TextAdapter(nn.Module):
def __init__(self, text_dim=768, hidden_dim=None):
super().__init__()
if hidden_dim is None:
hidden_dim = text_dim
self.fc = nn.Sequential(
nn.Linear(text_dim, hidden_dim),
nn.GELU(),
nn.Linear(hidden_dim, text_dim)
)
def forward(self, latents, texts, gamma):
n_class, channel = texts.shape
bs = latents.shape[0]
texts_after = self.fc(texts)
texts = texts + gamma * texts_after
texts = repeat(texts, 'n c -> b n c', b=bs)
return texts
class TextAdapterRefer(nn.Module):
def __init__(self, text_dim=768):
super().__init__()
self.fc = nn.Sequential(
nn.Linear(text_dim, text_dim),
nn.GELU(),
nn.Linear(text_dim, text_dim)
)
def forward(self, latents, texts, gamma):
texts_after = self.fc(texts)
texts = texts + gamma * texts_after
return texts
class TextAdapterDepth(nn.Module):
def __init__(self, text_dim=768):
super().__init__()
self.fc = nn.Sequential(
nn.Linear(text_dim, text_dim),
nn.GELU(),
nn.Linear(text_dim, text_dim)
)
def forward(self, latents, texts, gamma):
# use the gamma to blend
n_sen, channel = texts.shape
bs = latents.shape[0]
texts_after = self.fc(texts)
texts = texts + gamma * texts_after
texts = repeat(texts, 'n c -> n b c', b=1)
return texts
class FrozenCLIPEmbedder(nn.Module):
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77, pool=True):
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.device = device
self.max_length = max_length
self.freeze()
self.pool = pool
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens)
if self.pool:
z = outputs.pooler_output
else:
z = outputs.last_hidden_state
return z
def encode(self, text):
return self(text)