End of training
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
model-index:
|
7 |
+
- name: tun_wav2vec8
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/myriam-charfeddine5/huggingface/runs/w8fp109b)
|
15 |
+
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/myriam-charfeddine5/huggingface/runs/w8fp109b)
|
16 |
+
# tun_wav2vec8
|
17 |
+
|
18 |
+
This model was trained from scratch on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 1.2858
|
21 |
+
- Wer: 0.5831
|
22 |
+
- Cer: 0.1539
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 0.0001
|
42 |
+
- train_batch_size: 10
|
43 |
+
- eval_batch_size: 8
|
44 |
+
- seed: 42
|
45 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
46 |
+
- lr_scheduler_type: linear
|
47 |
+
- lr_scheduler_warmup_steps: 80
|
48 |
+
- num_epochs: 100
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
|
54 |
+
| 2.2416 | 5.0 | 300 | 1.6570 | 0.9561 | 0.3341 |
|
55 |
+
| 0.6397 | 10.0 | 600 | 1.0742 | 0.8652 | 0.3005 |
|
56 |
+
| 0.4434 | 15.0 | 900 | 1.2856 | 0.7743 | 0.2411 |
|
57 |
+
| 0.3084 | 20.0 | 1200 | 1.0868 | 0.7335 | 0.2106 |
|
58 |
+
| 0.2708 | 25.0 | 1500 | 0.9412 | 0.7367 | 0.1960 |
|
59 |
+
| 0.2519 | 30.0 | 1800 | 0.8857 | 0.6959 | 0.1863 |
|
60 |
+
| 0.1833 | 35.0 | 2100 | 1.2220 | 0.6740 | 0.1856 |
|
61 |
+
| 0.1354 | 40.0 | 2400 | 1.1682 | 0.6520 | 0.1786 |
|
62 |
+
| 0.1363 | 45.0 | 2700 | 1.1745 | 0.6865 | 0.1794 |
|
63 |
+
| 0.129 | 50.0 | 3000 | 1.0153 | 0.6426 | 0.1736 |
|
64 |
+
| 0.1036 | 55.0 | 3300 | 1.1114 | 0.6332 | 0.1705 |
|
65 |
+
| 0.1011 | 60.0 | 3600 | 1.4662 | 0.6238 | 0.1794 |
|
66 |
+
| 0.0902 | 65.0 | 3900 | 1.3797 | 0.6426 | 0.1779 |
|
67 |
+
| 0.074 | 70.0 | 4200 | 1.4517 | 0.6207 | 0.1813 |
|
68 |
+
| 0.0648 | 75.0 | 4500 | 1.2976 | 0.6207 | 0.1694 |
|
69 |
+
| 0.0591 | 80.0 | 4800 | 1.3030 | 0.5987 | 0.1690 |
|
70 |
+
| 0.0622 | 85.0 | 5100 | 1.2847 | 0.5925 | 0.1636 |
|
71 |
+
| 0.0639 | 90.0 | 5400 | 1.3230 | 0.5925 | 0.1659 |
|
72 |
+
| 0.0816 | 95.0 | 5700 | 1.2766 | 0.5925 | 0.1582 |
|
73 |
+
| 0.0444 | 100.0 | 6000 | 1.2858 | 0.5831 | 0.1539 |
|
74 |
+
|
75 |
+
|
76 |
+
### Framework versions
|
77 |
+
|
78 |
+
- Transformers 4.42.3
|
79 |
+
- Pytorch 2.1.2
|
80 |
+
- Datasets 2.20.0
|
81 |
+
- Tokenizers 0.19.1
|