--- tags: - generated_from_trainer metrics: - wer model-index: - name: tun_wav2vec8 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/myriam-charfeddine5/huggingface/runs/w8fp109b) [Visualize in Weights & Biases](https://wandb.ai/myriam-charfeddine5/huggingface/runs/w8fp109b) # tun_wav2vec8 This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.2858 - Wer: 0.5831 - Cer: 0.1539 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 10 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 80 - num_epochs: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.2416 | 5.0 | 300 | 1.6570 | 0.9561 | 0.3341 | | 0.6397 | 10.0 | 600 | 1.0742 | 0.8652 | 0.3005 | | 0.4434 | 15.0 | 900 | 1.2856 | 0.7743 | 0.2411 | | 0.3084 | 20.0 | 1200 | 1.0868 | 0.7335 | 0.2106 | | 0.2708 | 25.0 | 1500 | 0.9412 | 0.7367 | 0.1960 | | 0.2519 | 30.0 | 1800 | 0.8857 | 0.6959 | 0.1863 | | 0.1833 | 35.0 | 2100 | 1.2220 | 0.6740 | 0.1856 | | 0.1354 | 40.0 | 2400 | 1.1682 | 0.6520 | 0.1786 | | 0.1363 | 45.0 | 2700 | 1.1745 | 0.6865 | 0.1794 | | 0.129 | 50.0 | 3000 | 1.0153 | 0.6426 | 0.1736 | | 0.1036 | 55.0 | 3300 | 1.1114 | 0.6332 | 0.1705 | | 0.1011 | 60.0 | 3600 | 1.4662 | 0.6238 | 0.1794 | | 0.0902 | 65.0 | 3900 | 1.3797 | 0.6426 | 0.1779 | | 0.074 | 70.0 | 4200 | 1.4517 | 0.6207 | 0.1813 | | 0.0648 | 75.0 | 4500 | 1.2976 | 0.6207 | 0.1694 | | 0.0591 | 80.0 | 4800 | 1.3030 | 0.5987 | 0.1690 | | 0.0622 | 85.0 | 5100 | 1.2847 | 0.5925 | 0.1636 | | 0.0639 | 90.0 | 5400 | 1.3230 | 0.5925 | 0.1659 | | 0.0816 | 95.0 | 5700 | 1.2766 | 0.5925 | 0.1582 | | 0.0444 | 100.0 | 6000 | 1.2858 | 0.5831 | 0.1539 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1