File size: 2,608 Bytes
45919fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: tun_wav2vec_final
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tun_wav2vec_final

This model was trained from scratch on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3109
- Wer: 0.5737
- Cer: 0.1609

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 10
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 80
- num_epochs: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 0.2068        | 5.0   | 300  | 0.9499          | 0.6270 | 0.1709 |
| 0.1824        | 10.0  | 600  | 1.1143          | 0.6395 | 0.1740 |
| 0.1519        | 15.0  | 900  | 1.4216          | 0.6520 | 0.1852 |
| 0.1387        | 20.0  | 1200 | 1.1372          | 0.6176 | 0.1632 |
| 0.1221        | 25.0  | 1500 | 1.3203          | 0.6364 | 0.1694 |
| 0.1182        | 30.0  | 1800 | 1.3959          | 0.6270 | 0.1782 |
| 0.099         | 35.0  | 2100 | 1.6996          | 0.6176 | 0.1798 |
| 0.1098        | 40.0  | 2400 | 1.3228          | 0.6113 | 0.1713 |
| 0.0834        | 45.0  | 2700 | 1.2459          | 0.6082 | 0.1582 |
| 0.0801        | 50.0  | 3000 | 1.1573          | 0.5956 | 0.1516 |
| 0.107         | 55.0  | 3300 | 1.2025          | 0.6019 | 0.1640 |
| 0.0954        | 60.0  | 3600 | 1.2703          | 0.5611 | 0.1593 |
| 0.0581        | 65.0  | 3900 | 1.2382          | 0.5768 | 0.1566 |
| 0.0582        | 70.0  | 4200 | 1.1088          | 0.5799 | 0.1566 |
| 0.0434        | 75.0  | 4500 | 1.3048          | 0.5831 | 0.1597 |
| 0.0451        | 80.0  | 4800 | 1.3257          | 0.5768 | 0.1640 |
| 0.0383        | 85.0  | 5100 | 1.3002          | 0.5611 | 0.1532 |
| 0.0384        | 90.0  | 5400 | 1.4335          | 0.5768 | 0.1620 |
| 0.0518        | 95.0  | 5700 | 1.2875          | 0.5737 | 0.1570 |
| 0.0434        | 100.0 | 6000 | 1.3109          | 0.5737 | 0.1609 |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1