NDugar commited on
Commit
a20bc0f
1 Parent(s): 16ca628

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -1
README.md CHANGED
@@ -8,7 +8,16 @@ thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
8
  license: mit
9
  pipeline_tag: zero-shot-classification
10
  ---
11
-
 
 
 
 
 
 
 
 
 
12
  This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the GLUE MNLI dataset.
13
  It achieves the following results on the evaluation set:
14
  - Loss: 0.4103
 
8
  license: mit
9
  pipeline_tag: zero-shot-classification
10
  ---
11
+ ## DeBERTa: Decoding-enhanced BERT with Disentangled Attention
12
+ #### Notes.
13
+ - <sup>1</sup> Following RoBERTa, for RTE, MRPC, STS-B, we fine-tune the tasks based on [DeBERTa-Large-MNLI](https://huggingface.co/microsoft/deberta-large-mnli), [DeBERTa-XLarge-MNLI](https://huggingface.co/microsoft/deberta-xlarge-mnli), [DeBERTa-V2-XLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xlarge-mnli), [DeBERTa-V2-XXLarge-MNLI](https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli). The results of SST-2/QQP/QNLI/SQuADv2 will also be slightly improved when start from MNLI fine-tuned models, however, we only report the numbers fine-tuned from pretrained base models for those 4 tasks.
14
+ - <sup>2</sup> To try the **XXLarge** model with **[HF transformers](https://huggingface.co/transformers/main_classes/trainer.html)**, you need to specify **--sharded_ddp**
15
+
16
+ ```bash
17
+ cd transformers/examples/text-classification/
18
+ export TASK_NAME=mrpc
19
+ python -m torch.distributed.launch --nproc_per_node=8 run_glue.py --model_name_or_path microsoft/deberta-v2-xxlarge \\\n--task_name $TASK_NAME --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 \\\n--learning_rate 3e-6 --num_train_epochs 3 --output_dir /tmp/$TASK_NAME/ --overwrite_output_dir --sharded_ddp --fp16
20
+ ```
21
  This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the GLUE MNLI dataset.
22
  It achieves the following results on the evaluation set:
23
  - Loss: 0.4103