--- license: apache-2.0 base_model: albert-base-v2 tags: - generated_from_trainer datasets: - emotion metrics: - accuracy model-index: - name: ALBERT_Emotions_tuned results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.927 --- # ALBERT_Emotions_tuned This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1846 - Accuracy: 0.927 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.1 | 100 | 1.2655 | 0.5575 | | No log | 0.2 | 200 | 1.0801 | 0.6415 | | No log | 0.3 | 300 | 1.0138 | 0.661 | | No log | 0.4 | 400 | 1.0651 | 0.605 | | 1.1328 | 0.5 | 500 | 0.7816 | 0.758 | | 1.1328 | 0.6 | 600 | 0.6307 | 0.7885 | | 1.1328 | 0.7 | 700 | 0.5072 | 0.848 | | 1.1328 | 0.8 | 800 | 0.5057 | 0.8305 | | 1.1328 | 0.9 | 900 | 0.3853 | 0.889 | | 0.5503 | 1.0 | 1000 | 0.3769 | 0.8915 | | 0.5503 | 1.1 | 1100 | 0.3778 | 0.8995 | | 0.5503 | 1.2 | 1200 | 0.3899 | 0.9005 | | 0.5503 | 1.3 | 1300 | 0.3330 | 0.9085 | | 0.5503 | 1.4 | 1400 | 0.3339 | 0.9085 | | 0.3049 | 1.5 | 1500 | 0.2662 | 0.915 | | 0.3049 | 1.6 | 1600 | 0.3209 | 0.9045 | | 0.3049 | 1.7 | 1700 | 0.3110 | 0.898 | | 0.3049 | 1.8 | 1800 | 0.3185 | 0.9075 | | 0.3049 | 1.9 | 1900 | 0.2439 | 0.922 | | 0.2485 | 2.0 | 2000 | 0.2190 | 0.925 | | 0.2485 | 2.1 | 2100 | 0.2372 | 0.9235 | | 0.2485 | 2.2 | 2200 | 0.2497 | 0.9265 | | 0.2485 | 2.3 | 2300 | 0.2811 | 0.9195 | | 0.2485 | 2.4 | 2400 | 0.2350 | 0.9195 | | 0.1587 | 2.5 | 2500 | 0.2303 | 0.9245 | | 0.1587 | 2.6 | 2600 | 0.2242 | 0.9285 | | 0.1587 | 2.7 | 2700 | 0.2141 | 0.9325 | | 0.1587 | 2.8 | 2800 | 0.2185 | 0.9315 | | 0.1587 | 2.9 | 2900 | 0.2047 | 0.9315 | | 0.1398 | 3.0 | 3000 | 0.2036 | 0.9335 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2