Add SetFit model
Browse files- 1_Pooling/config.json +7 -0
- README.md +833 -0
- config.json +29 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +7 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +9 -0
- tokenizer.json +0 -0
- tokenizer_config.json +24 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,833 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: jhgan/ko-sroberta-multitask
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 제36조에 따른 수탁기관 정보 공시 방법은?
|
14 |
+
- text: 원장 인계 전 필요한 절차는?
|
15 |
+
- text: 미국에서 I140 허가 통지서 사본을 받으려면 어떻게 해야 하나요?
|
16 |
+
- text: 기술자문계획서 작성 시 연구일정과 기술보유자 선발 고려 이유는?
|
17 |
+
- text: 연구윤리활동비와 연구실안전관리비의 공통 경비 관리는?
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with jhgan/ko-sroberta-multitask
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: accuracy
|
31 |
+
value: 0.9951690821256038
|
32 |
+
name: Accuracy
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with jhgan/ko-sroberta-multitask
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 128 tokens
|
51 |
+
- **Number of Classes:** 2 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:--------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| rag | <ul><li>'QR코드 스캔 후 필요한 서류와 절차는?'</li><li>'연구용역사업의 원가계산서 관련, 일정 금액 이상 지출 승인은 누구에게 받나요?'</li><li>'계약부서 승인 없이 지급신청 시 주의할 점은?'</li></ul> |
|
66 |
+
| general | <ul><li>'아래 글의 요지 좀 설명해줘.\n \n 다른 문화권에서 온 여자와 데이트. 관계에 대해 좋은 점이 많이 있습니다. 공통된 직업적 관심사, 동일한 성욕, 그리고 서로를 존중한다는 점은 제게는 새로운 관계입니다(항상 남성에 대해 안 좋은 태도를 가진 여자들과만 사귀어 왔죠). 그녀는 저를 정말 사랑해요. \n \n 하지만 장기적인 생존 가능성에 대해 몇 가지 심각한 우려가 있습니다. 하나는 부모님에 관한 것입니다. 제 부모님은 우리가 사귀는 사이라는 사실을 알게 되자 "네가 미국에 머물 수 있는 티켓이라는 걸 기억하라"고 말씀하셨어요. 우리가 진짜 사귀는 사이라는 사실을 알게 된 부모님은 제가 얼마나 버는지 알고 싶어 하셨고(저는 대학원생입니다), 존경의 표시로 은퇴한 부모님을 부양하는 전통에 대해 제가 괜찮은지 확인하고 싶어 하셨습니다(부모님은 그런 도움이 필요 없을 만큼 잘 살고 계시지만요). 여자친구는 이에 대해 부모님의 의견에 동의하며 제가 괜찮지 않다면 돈을 더 벌어서 직접 해야 한다고 말했습니다. 또한 여자친구는 제가 이전에 결혼했고 지금은 이혼했다는 사실을 부모님이 \'절대 알 수 없다\'고 말합니다. \n \n 제가 극복하거나 간과할 수 있었던 다른 문제들도 있지만(한 가지 예로, 그녀는 사교적이지 않지만 저는 사교적입니다), 이러한 문제들이 결합되어 그녀와의 미래는 앞으로 많은 문제가 예고되어 있고 위험하다고 느낍니다. 이전 결혼 생활에서 저는 그런 징후를 무시하고 대가를 치렀고, 그 역사를 반복하고 싶지 않습니다. 동시에 저와 성적으로도 잘 어울리는 파트너가 있다는 것은 정말 좋은 일입니다. \n \n 다른 사람들은 이런 다문화적인 상황에서 어떤 경험을 했는지, 특히 장기적인 경험이 있다면 어떤지 궁금합니다.'</li><li>'너는 누구냐니까'</li><li>'문제와 몇 가지 답 옵션("A", "B", "C", "D"와 연관된)이 주어집니다. 상식적인 지식을 바탕으로 정답을 선택해야 합니다. 연상에 기반한 답은 피하고, 답안 세트는 연상을 넘어서는 상식을 파악하기 위해 의도적으로 선택된 것입니다. \'A\', \'B\', \'C\', \'D\', \'E\' 중 하나를 제외하고는 다른 문자를 생성하지 말고 각 문제에 대해 하나의 답만 작성하세요.\n\n폰이라는 이름은 매우 다재다능할 수 있지만, 모든 부품이 중요한 것은 무엇일까요?\n(A)체스 게임 (B)계획 (C)체스 세트 (D)체커 (E)노스 캐롤라이나'</li></ul> |
|
67 |
+
|
68 |
+
## Evaluation
|
69 |
+
|
70 |
+
### Metrics
|
71 |
+
| Label | Accuracy |
|
72 |
+
|:--------|:---------|
|
73 |
+
| **all** | 0.9952 |
|
74 |
+
|
75 |
+
## Uses
|
76 |
+
|
77 |
+
### Direct Use for Inference
|
78 |
+
|
79 |
+
First install the SetFit library:
|
80 |
+
|
81 |
+
```bash
|
82 |
+
pip install setfit
|
83 |
+
```
|
84 |
+
|
85 |
+
Then you can load this model and run inference.
|
86 |
+
|
87 |
+
```python
|
88 |
+
from setfit import SetFitModel
|
89 |
+
|
90 |
+
# Download from the 🤗 Hub
|
91 |
+
model = SetFitModel.from_pretrained("NTIS/sroberta-embedding")
|
92 |
+
# Run inference
|
93 |
+
preds = model("원장 인계 전 필요한 절차는?")
|
94 |
+
```
|
95 |
+
|
96 |
+
<!--
|
97 |
+
### Downstream Use
|
98 |
+
|
99 |
+
*List how someone could finetune this model on their own dataset.*
|
100 |
+
-->
|
101 |
+
|
102 |
+
<!--
|
103 |
+
### Out-of-Scope Use
|
104 |
+
|
105 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
106 |
+
-->
|
107 |
+
|
108 |
+
<!--
|
109 |
+
## Bias, Risks and Limitations
|
110 |
+
|
111 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
112 |
+
-->
|
113 |
+
|
114 |
+
<!--
|
115 |
+
### Recommendations
|
116 |
+
|
117 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
118 |
+
-->
|
119 |
+
|
120 |
+
## Training Details
|
121 |
+
|
122 |
+
### Training Set Metrics
|
123 |
+
| Training set | Min | Median | Max |
|
124 |
+
|:-------------|:----|:-------|:----|
|
125 |
+
| Word count | 2 | 24.824 | 722 |
|
126 |
+
|
127 |
+
| Label | Training Sample Count |
|
128 |
+
|:--------|:----------------------|
|
129 |
+
| rag | 553 |
|
130 |
+
| general | 447 |
|
131 |
+
|
132 |
+
### Training Hyperparameters
|
133 |
+
- batch_size: (64, 64)
|
134 |
+
- num_epochs: (4, 4)
|
135 |
+
- max_steps: -1
|
136 |
+
- sampling_strategy: oversampling
|
137 |
+
- body_learning_rate: (2e-05, 1e-05)
|
138 |
+
- head_learning_rate: 0.01
|
139 |
+
- loss: CosineSimilarityLoss
|
140 |
+
- distance_metric: cosine_distance
|
141 |
+
- margin: 0.25
|
142 |
+
- end_to_end: False
|
143 |
+
- use_amp: False
|
144 |
+
- warmup_proportion: 0.1
|
145 |
+
- seed: 42
|
146 |
+
- eval_max_steps: -1
|
147 |
+
- load_best_model_at_end: True
|
148 |
+
|
149 |
+
### Training Results
|
150 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
151 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
152 |
+
| 0.0001 | 1 | 0.2655 | - |
|
153 |
+
| 0.0063 | 50 | 0.2091 | - |
|
154 |
+
| 0.0126 | 100 | 0.2327 | - |
|
155 |
+
| 0.0189 | 150 | 0.1578 | - |
|
156 |
+
| 0.0253 | 200 | 0.0836 | - |
|
157 |
+
| 0.0316 | 250 | 0.0274 | - |
|
158 |
+
| 0.0379 | 300 | 0.0068 | - |
|
159 |
+
| 0.0442 | 350 | 0.0032 | - |
|
160 |
+
| 0.0505 | 400 | 0.0013 | - |
|
161 |
+
| 0.0568 | 450 | 0.0012 | - |
|
162 |
+
| 0.0632 | 500 | 0.0009 | - |
|
163 |
+
| 0.0695 | 550 | 0.0006 | - |
|
164 |
+
| 0.0758 | 600 | 0.0004 | - |
|
165 |
+
| 0.0821 | 650 | 0.0004 | - |
|
166 |
+
| 0.0884 | 700 | 0.0003 | - |
|
167 |
+
| 0.0947 | 750 | 0.0003 | - |
|
168 |
+
| 0.1011 | 800 | 0.0003 | - |
|
169 |
+
| 0.1074 | 850 | 0.0002 | - |
|
170 |
+
| 0.1137 | 900 | 0.0002 | - |
|
171 |
+
| 0.1200 | 950 | 0.0002 | - |
|
172 |
+
| 0.1263 | 1000 | 0.0002 | - |
|
173 |
+
| 0.1326 | 1050 | 0.0001 | - |
|
174 |
+
| 0.1390 | 1100 | 0.0001 | - |
|
175 |
+
| 0.1453 | 1150 | 0.0001 | - |
|
176 |
+
| 0.1516 | 1200 | 0.0001 | - |
|
177 |
+
| 0.1579 | 1250 | 0.0001 | - |
|
178 |
+
| 0.1642 | 1300 | 0.0001 | - |
|
179 |
+
| 0.1705 | 1350 | 0.0001 | - |
|
180 |
+
| 0.1769 | 1400 | 0.0001 | - |
|
181 |
+
| 0.1832 | 1450 | 0.0001 | - |
|
182 |
+
| 0.1895 | 1500 | 0.0001 | - |
|
183 |
+
| 0.1958 | 1550 | 0.0001 | - |
|
184 |
+
| 0.2021 | 1600 | 0.0 | - |
|
185 |
+
| 0.2084 | 1650 | 0.0001 | - |
|
186 |
+
| 0.2148 | 1700 | 0.0001 | - |
|
187 |
+
| 0.2211 | 1750 | 0.0 | - |
|
188 |
+
| 0.2274 | 1800 | 0.0001 | - |
|
189 |
+
| 0.2337 | 1850 | 0.0 | - |
|
190 |
+
| 0.2400 | 1900 | 0.0 | - |
|
191 |
+
| 0.2463 | 1950 | 0.0 | - |
|
192 |
+
| 0.2527 | 2000 | 0.0 | - |
|
193 |
+
| 0.2590 | 2050 | 0.0 | - |
|
194 |
+
| 0.2653 | 2100 | 0.0 | - |
|
195 |
+
| 0.2716 | 2150 | 0.0 | - |
|
196 |
+
| 0.2779 | 2200 | 0.0 | - |
|
197 |
+
| 0.2842 | 2250 | 0.0 | - |
|
198 |
+
| 0.2906 | 2300 | 0.0 | - |
|
199 |
+
| 0.2969 | 2350 | 0.0 | - |
|
200 |
+
| 0.3032 | 2400 | 0.0 | - |
|
201 |
+
| 0.3095 | 2450 | 0.0 | - |
|
202 |
+
| 0.3158 | 2500 | 0.0 | - |
|
203 |
+
| 0.3221 | 2550 | 0.0 | - |
|
204 |
+
| 0.3284 | 2600 | 0.0 | - |
|
205 |
+
| 0.3348 | 2650 | 0.0 | - |
|
206 |
+
| 0.3411 | 2700 | 0.0 | - |
|
207 |
+
| 0.3474 | 2750 | 0.0 | - |
|
208 |
+
| 0.3537 | 2800 | 0.0 | - |
|
209 |
+
| 0.3600 | 2850 | 0.0 | - |
|
210 |
+
| 0.3663 | 2900 | 0.0 | - |
|
211 |
+
| 0.3727 | 2950 | 0.0 | - |
|
212 |
+
| 0.3790 | 3000 | 0.0 | - |
|
213 |
+
| 0.3853 | 3050 | 0.0 | - |
|
214 |
+
| 0.3916 | 3100 | 0.0 | - |
|
215 |
+
| 0.3979 | 3150 | 0.0 | - |
|
216 |
+
| 0.4042 | 3200 | 0.0 | - |
|
217 |
+
| 0.4106 | 3250 | 0.0 | - |
|
218 |
+
| 0.4169 | 3300 | 0.0 | - |
|
219 |
+
| 0.4232 | 3350 | 0.0 | - |
|
220 |
+
| 0.4295 | 3400 | 0.0 | - |
|
221 |
+
| 0.4358 | 3450 | 0.0 | - |
|
222 |
+
| 0.4421 | 3500 | 0.0 | - |
|
223 |
+
| 0.4485 | 3550 | 0.0 | - |
|
224 |
+
| 0.4548 | 3600 | 0.0 | - |
|
225 |
+
| 0.4611 | 3650 | 0.0 | - |
|
226 |
+
| 0.4674 | 3700 | 0.0 | - |
|
227 |
+
| 0.4737 | 3750 | 0.0 | - |
|
228 |
+
| 0.4800 | 3800 | 0.0 | - |
|
229 |
+
| 0.4864 | 3850 | 0.0 | - |
|
230 |
+
| 0.4927 | 3900 | 0.0 | - |
|
231 |
+
| 0.4990 | 3950 | 0.0 | - |
|
232 |
+
| 0.5053 | 4000 | 0.0 | - |
|
233 |
+
| 0.5116 | 4050 | 0.0 | - |
|
234 |
+
| 0.5179 | 4100 | 0.0 | - |
|
235 |
+
| 0.5243 | 4150 | 0.0 | - |
|
236 |
+
| 0.5306 | 4200 | 0.0 | - |
|
237 |
+
| 0.5369 | 4250 | 0.0 | - |
|
238 |
+
| 0.5432 | 4300 | 0.0 | - |
|
239 |
+
| 0.5495 | 4350 | 0.0004 | - |
|
240 |
+
| 0.5558 | 4400 | 0.0001 | - |
|
241 |
+
| 0.5622 | 4450 | 0.0 | - |
|
242 |
+
| 0.5685 | 4500 | 0.0096 | - |
|
243 |
+
| 0.5748 | 4550 | 0.0 | - |
|
244 |
+
| 0.5811 | 4600 | 0.0 | - |
|
245 |
+
| 0.5874 | 4650 | 0.0 | - |
|
246 |
+
| 0.5937 | 4700 | 0.0 | - |
|
247 |
+
| 0.6001 | 4750 | 0.0 | - |
|
248 |
+
| 0.6064 | 4800 | 0.0 | - |
|
249 |
+
| 0.6127 | 4850 | 0.0 | - |
|
250 |
+
| 0.6190 | 4900 | 0.0 | - |
|
251 |
+
| 0.6253 | 4950 | 0.0 | - |
|
252 |
+
| 0.6316 | 5000 | 0.0 | - |
|
253 |
+
| 0.6379 | 5050 | 0.0 | - |
|
254 |
+
| 0.6443 | 5100 | 0.0 | - |
|
255 |
+
| 0.6506 | 5150 | 0.0 | - |
|
256 |
+
| 0.6569 | 5200 | 0.0 | - |
|
257 |
+
| 0.6632 | 5250 | 0.0 | - |
|
258 |
+
| 0.6695 | 5300 | 0.0 | - |
|
259 |
+
| 0.6758 | 5350 | 0.0 | - |
|
260 |
+
| 0.6822 | 5400 | 0.0 | - |
|
261 |
+
| 0.6885 | 5450 | 0.0 | - |
|
262 |
+
| 0.6948 | 5500 | 0.0 | - |
|
263 |
+
| 0.7011 | 5550 | 0.0 | - |
|
264 |
+
| 0.7074 | 5600 | 0.0 | - |
|
265 |
+
| 0.7137 | 5650 | 0.0 | - |
|
266 |
+
| 0.7201 | 5700 | 0.0 | - |
|
267 |
+
| 0.7264 | 5750 | 0.0 | - |
|
268 |
+
| 0.7327 | 5800 | 0.0 | - |
|
269 |
+
| 0.7390 | 5850 | 0.0 | - |
|
270 |
+
| 0.7453 | 5900 | 0.0 | - |
|
271 |
+
| 0.7516 | 5950 | 0.0 | - |
|
272 |
+
| 0.7580 | 6000 | 0.0 | - |
|
273 |
+
| 0.7643 | 6050 | 0.0 | - |
|
274 |
+
| 0.7706 | 6100 | 0.0 | - |
|
275 |
+
| 0.7769 | 6150 | 0.0 | - |
|
276 |
+
| 0.7832 | 6200 | 0.0 | - |
|
277 |
+
| 0.7895 | 6250 | 0.0 | - |
|
278 |
+
| 0.7959 | 6300 | 0.0 | - |
|
279 |
+
| 0.8022 | 6350 | 0.0 | - |
|
280 |
+
| 0.8085 | 6400 | 0.0 | - |
|
281 |
+
| 0.8148 | 6450 | 0.0 | - |
|
282 |
+
| 0.8211 | 6500 | 0.0 | - |
|
283 |
+
| 0.8274 | 6550 | 0.0 | - |
|
284 |
+
| 0.8338 | 6600 | 0.0 | - |
|
285 |
+
| 0.8401 | 6650 | 0.0 | - |
|
286 |
+
| 0.8464 | 6700 | 0.0 | - |
|
287 |
+
| 0.8527 | 6750 | 0.0 | - |
|
288 |
+
| 0.8590 | 6800 | 0.0 | - |
|
289 |
+
| 0.8653 | 6850 | 0.0 | - |
|
290 |
+
| 0.8717 | 6900 | 0.0 | - |
|
291 |
+
| 0.8780 | 6950 | 0.0 | - |
|
292 |
+
| 0.8843 | 7000 | 0.0 | - |
|
293 |
+
| 0.8906 | 7050 | 0.0 | - |
|
294 |
+
| 0.8969 | 7100 | 0.0 | - |
|
295 |
+
| 0.9032 | 7150 | 0.0 | - |
|
296 |
+
| 0.9096 | 7200 | 0.0 | - |
|
297 |
+
| 0.9159 | 7250 | 0.0 | - |
|
298 |
+
| 0.9222 | 7300 | 0.0 | - |
|
299 |
+
| 0.9285 | 7350 | 0.0 | - |
|
300 |
+
| 0.9348 | 7400 | 0.0 | - |
|
301 |
+
| 0.9411 | 7450 | 0.0 | - |
|
302 |
+
| 0.9474 | 7500 | 0.0 | - |
|
303 |
+
| 0.9538 | 7550 | 0.0 | - |
|
304 |
+
| 0.9601 | 7600 | 0.0 | - |
|
305 |
+
| 0.9664 | 7650 | 0.0 | - |
|
306 |
+
| 0.9727 | 7700 | 0.0 | - |
|
307 |
+
| 0.9790 | 7750 | 0.0 | - |
|
308 |
+
| 0.9853 | 7800 | 0.0 | - |
|
309 |
+
| 0.9917 | 7850 | 0.0 | - |
|
310 |
+
| 0.9980 | 7900 | 0.0 | - |
|
311 |
+
| 1.0 | 7916 | - | 0.0096 |
|
312 |
+
| 1.0043 | 7950 | 0.0 | - |
|
313 |
+
| 1.0106 | 8000 | 0.0 | - |
|
314 |
+
| 1.0169 | 8050 | 0.0 | - |
|
315 |
+
| 1.0232 | 8100 | 0.0 | - |
|
316 |
+
| 1.0296 | 8150 | 0.0 | - |
|
317 |
+
| 1.0359 | 8200 | 0.0 | - |
|
318 |
+
| 1.0422 | 8250 | 0.0 | - |
|
319 |
+
| 1.0485 | 8300 | 0.0 | - |
|
320 |
+
| 1.0548 | 8350 | 0.0 | - |
|
321 |
+
| 1.0611 | 8400 | 0.0 | - |
|
322 |
+
| 1.0675 | 8450 | 0.0 | - |
|
323 |
+
| 1.0738 | 8500 | 0.0 | - |
|
324 |
+
| 1.0801 | 8550 | 0.0 | - |
|
325 |
+
| 1.0864 | 8600 | 0.0 | - |
|
326 |
+
| 1.0927 | 8650 | 0.0 | - |
|
327 |
+
| 1.0990 | 8700 | 0.0 | - |
|
328 |
+
| 1.1054 | 8750 | 0.0 | - |
|
329 |
+
| 1.1117 | 8800 | 0.0 | - |
|
330 |
+
| 1.1180 | 8850 | 0.0 | - |
|
331 |
+
| 1.1243 | 8900 | 0.0 | - |
|
332 |
+
| 1.1306 | 8950 | 0.0 | - |
|
333 |
+
| 1.1369 | 9000 | 0.0 | - |
|
334 |
+
| 1.1433 | 9050 | 0.0 | - |
|
335 |
+
| 1.1496 | 9100 | 0.0 | - |
|
336 |
+
| 1.1559 | 9150 | 0.0 | - |
|
337 |
+
| 1.1622 | 9200 | 0.0 | - |
|
338 |
+
| 1.1685 | 9250 | 0.0 | - |
|
339 |
+
| 1.1748 | 9300 | 0.0 | - |
|
340 |
+
| 1.1812 | 9350 | 0.0 | - |
|
341 |
+
| 1.1875 | 9400 | 0.0 | - |
|
342 |
+
| 1.1938 | 9450 | 0.0 | - |
|
343 |
+
| 1.2001 | 9500 | 0.0 | - |
|
344 |
+
| 1.2064 | 9550 | 0.0 | - |
|
345 |
+
| 1.2127 | 9600 | 0.0 | - |
|
346 |
+
| 1.2191 | 9650 | 0.0 | - |
|
347 |
+
| 1.2254 | 9700 | 0.0 | - |
|
348 |
+
| 1.2317 | 9750 | 0.0 | - |
|
349 |
+
| 1.2380 | 9800 | 0.0 | - |
|
350 |
+
| 1.2443 | 9850 | 0.0 | - |
|
351 |
+
| 1.2506 | 9900 | 0.0 | - |
|
352 |
+
| 1.2569 | 9950 | 0.0 | - |
|
353 |
+
| 1.2633 | 10000 | 0.0 | - |
|
354 |
+
| 1.2696 | 10050 | 0.0 | - |
|
355 |
+
| 1.2759 | 10100 | 0.0 | - |
|
356 |
+
| 1.2822 | 10150 | 0.0 | - |
|
357 |
+
| 1.2885 | 10200 | 0.0 | - |
|
358 |
+
| 1.2948 | 10250 | 0.0 | - |
|
359 |
+
| 1.3012 | 10300 | 0.0 | - |
|
360 |
+
| 1.3075 | 10350 | 0.0 | - |
|
361 |
+
| 1.3138 | 10400 | 0.0 | - |
|
362 |
+
| 1.3201 | 10450 | 0.0 | - |
|
363 |
+
| 1.3264 | 10500 | 0.0 | - |
|
364 |
+
| 1.3327 | 10550 | 0.0 | - |
|
365 |
+
| 1.3391 | 10600 | 0.0 | - |
|
366 |
+
| 1.3454 | 10650 | 0.0 | - |
|
367 |
+
| 1.3517 | 10700 | 0.0 | - |
|
368 |
+
| 1.3580 | 10750 | 0.0 | - |
|
369 |
+
| 1.3643 | 10800 | 0.0 | - |
|
370 |
+
| 1.3706 | 10850 | 0.0 | - |
|
371 |
+
| 1.3770 | 10900 | 0.0 | - |
|
372 |
+
| 1.3833 | 10950 | 0.0 | - |
|
373 |
+
| 1.3896 | 11000 | 0.0 | - |
|
374 |
+
| 1.3959 | 11050 | 0.0 | - |
|
375 |
+
| 1.4022 | 11100 | 0.0 | - |
|
376 |
+
| 1.4085 | 11150 | 0.0 | - |
|
377 |
+
| 1.4149 | 11200 | 0.0 | - |
|
378 |
+
| 1.4212 | 11250 | 0.0 | - |
|
379 |
+
| 1.4275 | 11300 | 0.0 | - |
|
380 |
+
| 1.4338 | 11350 | 0.0 | - |
|
381 |
+
| 1.4401 | 11400 | 0.0 | - |
|
382 |
+
| 1.4464 | 11450 | 0.0 | - |
|
383 |
+
| 1.4528 | 11500 | 0.0 | - |
|
384 |
+
| 1.4591 | 11550 | 0.0 | - |
|
385 |
+
| 1.4654 | 11600 | 0.0 | - |
|
386 |
+
| 1.4717 | 11650 | 0.0 | - |
|
387 |
+
| 1.4780 | 11700 | 0.0 | - |
|
388 |
+
| 1.4843 | 11750 | 0.0 | - |
|
389 |
+
| 1.4907 | 11800 | 0.0 | - |
|
390 |
+
| 1.4970 | 11850 | 0.0 | - |
|
391 |
+
| 1.5033 | 11900 | 0.0 | - |
|
392 |
+
| 1.5096 | 11950 | 0.0 | - |
|
393 |
+
| 1.5159 | 12000 | 0.0 | - |
|
394 |
+
| 1.5222 | 12050 | 0.0 | - |
|
395 |
+
| 1.5285 | 12100 | 0.0 | - |
|
396 |
+
| 1.5349 | 12150 | 0.0 | - |
|
397 |
+
| 1.5412 | 12200 | 0.0 | - |
|
398 |
+
| 1.5475 | 12250 | 0.0 | - |
|
399 |
+
| 1.5538 | 12300 | 0.0 | - |
|
400 |
+
| 1.5601 | 12350 | 0.0 | - |
|
401 |
+
| 1.5664 | 12400 | 0.0 | - |
|
402 |
+
| 1.5728 | 12450 | 0.0 | - |
|
403 |
+
| 1.5791 | 12500 | 0.0 | - |
|
404 |
+
| 1.5854 | 12550 | 0.0 | - |
|
405 |
+
| 1.5917 | 12600 | 0.0 | - |
|
406 |
+
| 1.5980 | 12650 | 0.0 | - |
|
407 |
+
| 1.6043 | 12700 | 0.0 | - |
|
408 |
+
| 1.6107 | 12750 | 0.0 | - |
|
409 |
+
| 1.6170 | 12800 | 0.0 | - |
|
410 |
+
| 1.6233 | 12850 | 0.0 | - |
|
411 |
+
| 1.6296 | 12900 | 0.0 | - |
|
412 |
+
| 1.6359 | 12950 | 0.0 | - |
|
413 |
+
| 1.6422 | 13000 | 0.0 | - |
|
414 |
+
| 1.6486 | 13050 | 0.0 | - |
|
415 |
+
| 1.6549 | 13100 | 0.0 | - |
|
416 |
+
| 1.6612 | 13150 | 0.0 | - |
|
417 |
+
| 1.6675 | 13200 | 0.0 | - |
|
418 |
+
| 1.6738 | 13250 | 0.0 | - |
|
419 |
+
| 1.6801 | 13300 | 0.0 | - |
|
420 |
+
| 1.6865 | 13350 | 0.0 | - |
|
421 |
+
| 1.6928 | 13400 | 0.0 | - |
|
422 |
+
| 1.6991 | 13450 | 0.0 | - |
|
423 |
+
| 1.7054 | 13500 | 0.0 | - |
|
424 |
+
| 1.7117 | 13550 | 0.0 | - |
|
425 |
+
| 1.7180 | 13600 | 0.0 | - |
|
426 |
+
| 1.7244 | 13650 | 0.0 | - |
|
427 |
+
| 1.7307 | 13700 | 0.0 | - |
|
428 |
+
| 1.7370 | 13750 | 0.0 | - |
|
429 |
+
| 1.7433 | 13800 | 0.0 | - |
|
430 |
+
| 1.7496 | 13850 | 0.0 | - |
|
431 |
+
| 1.7559 | 13900 | 0.0 | - |
|
432 |
+
| 1.7623 | 13950 | 0.0 | - |
|
433 |
+
| 1.7686 | 14000 | 0.0 | - |
|
434 |
+
| 1.7749 | 14050 | 0.0 | - |
|
435 |
+
| 1.7812 | 14100 | 0.0 | - |
|
436 |
+
| 1.7875 | 14150 | 0.0 | - |
|
437 |
+
| 1.7938 | 14200 | 0.0 | - |
|
438 |
+
| 1.8002 | 14250 | 0.0 | - |
|
439 |
+
| 1.8065 | 14300 | 0.0 | - |
|
440 |
+
| 1.8128 | 14350 | 0.0 | - |
|
441 |
+
| 1.8191 | 14400 | 0.0 | - |
|
442 |
+
| 1.8254 | 14450 | 0.0 | - |
|
443 |
+
| 1.8317 | 14500 | 0.0 | - |
|
444 |
+
| 1.8380 | 14550 | 0.0 | - |
|
445 |
+
| 1.8444 | 14600 | 0.0 | - |
|
446 |
+
| 1.8507 | 14650 | 0.0 | - |
|
447 |
+
| 1.8570 | 14700 | 0.0 | - |
|
448 |
+
| 1.8633 | 14750 | 0.0 | - |
|
449 |
+
| 1.8696 | 14800 | 0.0 | - |
|
450 |
+
| 1.8759 | 14850 | 0.0 | - |
|
451 |
+
| 1.8823 | 14900 | 0.0 | - |
|
452 |
+
| 1.8886 | 14950 | 0.0 | - |
|
453 |
+
| 1.8949 | 15000 | 0.0 | - |
|
454 |
+
| 1.9012 | 15050 | 0.0 | - |
|
455 |
+
| 1.9075 | 15100 | 0.0 | - |
|
456 |
+
| 1.9138 | 15150 | 0.0 | - |
|
457 |
+
| 1.9202 | 15200 | 0.0 | - |
|
458 |
+
| 1.9265 | 15250 | 0.0 | - |
|
459 |
+
| 1.9328 | 15300 | 0.0 | - |
|
460 |
+
| 1.9391 | 15350 | 0.0 | - |
|
461 |
+
| 1.9454 | 15400 | 0.0 | - |
|
462 |
+
| 1.9517 | 15450 | 0.0 | - |
|
463 |
+
| 1.9581 | 15500 | 0.0 | - |
|
464 |
+
| 1.9644 | 15550 | 0.0 | - |
|
465 |
+
| 1.9707 | 15600 | 0.0 | - |
|
466 |
+
| 1.9770 | 15650 | 0.0 | - |
|
467 |
+
| 1.9833 | 15700 | 0.0 | - |
|
468 |
+
| 1.9896 | 15750 | 0.0 | - |
|
469 |
+
| 1.9960 | 15800 | 0.0 | - |
|
470 |
+
| **2.0** | **15832** | **-** | **0.0096** |
|
471 |
+
| 2.0023 | 15850 | 0.0 | - |
|
472 |
+
| 2.0086 | 15900 | 0.0 | - |
|
473 |
+
| 2.0149 | 15950 | 0.0 | - |
|
474 |
+
| 2.0212 | 16000 | 0.0 | - |
|
475 |
+
| 2.0275 | 16050 | 0.0 | - |
|
476 |
+
| 2.0339 | 16100 | 0.0 | - |
|
477 |
+
| 2.0402 | 16150 | 0.0 | - |
|
478 |
+
| 2.0465 | 16200 | 0.0 | - |
|
479 |
+
| 2.0528 | 16250 | 0.0 | - |
|
480 |
+
| 2.0591 | 16300 | 0.0 | - |
|
481 |
+
| 2.0654 | 16350 | 0.0 | - |
|
482 |
+
| 2.0718 | 16400 | 0.0 | - |
|
483 |
+
| 2.0781 | 16450 | 0.0 | - |
|
484 |
+
| 2.0844 | 16500 | 0.0 | - |
|
485 |
+
| 2.0907 | 16550 | 0.0 | - |
|
486 |
+
| 2.0970 | 16600 | 0.0 | - |
|
487 |
+
| 2.1033 | 16650 | 0.0 | - |
|
488 |
+
| 2.1097 | 16700 | 0.0 | - |
|
489 |
+
| 2.1160 | 16750 | 0.0 | - |
|
490 |
+
| 2.1223 | 16800 | 0.0 | - |
|
491 |
+
| 2.1286 | 16850 | 0.0 | - |
|
492 |
+
| 2.1349 | 16900 | 0.0 | - |
|
493 |
+
| 2.1412 | 16950 | 0.0 | - |
|
494 |
+
| 2.1475 | 17000 | 0.0 | - |
|
495 |
+
| 2.1539 | 17050 | 0.0 | - |
|
496 |
+
| 2.1602 | 17100 | 0.0 | - |
|
497 |
+
| 2.1665 | 17150 | 0.0 | - |
|
498 |
+
| 2.1728 | 17200 | 0.0 | - |
|
499 |
+
| 2.1791 | 17250 | 0.0 | - |
|
500 |
+
| 2.1854 | 17300 | 0.0 | - |
|
501 |
+
| 2.1918 | 17350 | 0.0 | - |
|
502 |
+
| 2.1981 | 17400 | 0.0 | - |
|
503 |
+
| 2.2044 | 17450 | 0.0 | - |
|
504 |
+
| 2.2107 | 17500 | 0.0 | - |
|
505 |
+
| 2.2170 | 17550 | 0.0 | - |
|
506 |
+
| 2.2233 | 17600 | 0.0 | - |
|
507 |
+
| 2.2297 | 17650 | 0.0 | - |
|
508 |
+
| 2.2360 | 17700 | 0.0 | - |
|
509 |
+
| 2.2423 | 17750 | 0.0 | - |
|
510 |
+
| 2.2486 | 17800 | 0.0 | - |
|
511 |
+
| 2.2549 | 17850 | 0.0 | - |
|
512 |
+
| 2.2612 | 17900 | 0.0 | - |
|
513 |
+
| 2.2676 | 17950 | 0.0 | - |
|
514 |
+
| 2.2739 | 18000 | 0.0 | - |
|
515 |
+
| 2.2802 | 18050 | 0.0 | - |
|
516 |
+
| 2.2865 | 18100 | 0.0 | - |
|
517 |
+
| 2.2928 | 18150 | 0.0 | - |
|
518 |
+
| 2.2991 | 18200 | 0.0 | - |
|
519 |
+
| 2.3055 | 18250 | 0.0 | - |
|
520 |
+
| 2.3118 | 18300 | 0.0 | - |
|
521 |
+
| 2.3181 | 18350 | 0.0 | - |
|
522 |
+
| 2.3244 | 18400 | 0.0 | - |
|
523 |
+
| 2.3307 | 18450 | 0.0 | - |
|
524 |
+
| 2.3370 | 18500 | 0.0 | - |
|
525 |
+
| 2.3434 | 18550 | 0.0 | - |
|
526 |
+
| 2.3497 | 18600 | 0.0 | - |
|
527 |
+
| 2.3560 | 18650 | 0.0 | - |
|
528 |
+
| 2.3623 | 18700 | 0.0 | - |
|
529 |
+
| 2.3686 | 18750 | 0.0 | - |
|
530 |
+
| 2.3749 | 18800 | 0.0 | - |
|
531 |
+
| 2.3813 | 18850 | 0.0 | - |
|
532 |
+
| 2.3876 | 18900 | 0.0 | - |
|
533 |
+
| 2.3939 | 18950 | 0.0 | - |
|
534 |
+
| 2.4002 | 19000 | 0.0 | - |
|
535 |
+
| 2.4065 | 19050 | 0.0 | - |
|
536 |
+
| 2.4128 | 19100 | 0.0 | - |
|
537 |
+
| 2.4192 | 19150 | 0.0 | - |
|
538 |
+
| 2.4255 | 19200 | 0.0 | - |
|
539 |
+
| 2.4318 | 19250 | 0.0 | - |
|
540 |
+
| 2.4381 | 19300 | 0.0 | - |
|
541 |
+
| 2.4444 | 19350 | 0.0 | - |
|
542 |
+
| 2.4507 | 19400 | 0.0 | - |
|
543 |
+
| 2.4570 | 19450 | 0.0 | - |
|
544 |
+
| 2.4634 | 19500 | 0.0 | - |
|
545 |
+
| 2.4697 | 19550 | 0.0 | - |
|
546 |
+
| 2.4760 | 19600 | 0.0 | - |
|
547 |
+
| 2.4823 | 19650 | 0.0 | - |
|
548 |
+
| 2.4886 | 19700 | 0.0 | - |
|
549 |
+
| 2.4949 | 19750 | 0.0 | - |
|
550 |
+
| 2.5013 | 19800 | 0.0 | - |
|
551 |
+
| 2.5076 | 19850 | 0.0 | - |
|
552 |
+
| 2.5139 | 19900 | 0.0 | - |
|
553 |
+
| 2.5202 | 19950 | 0.0 | - |
|
554 |
+
| 2.5265 | 20000 | 0.0 | - |
|
555 |
+
| 2.5328 | 20050 | 0.0 | - |
|
556 |
+
| 2.5392 | 20100 | 0.0 | - |
|
557 |
+
| 2.5455 | 20150 | 0.0 | - |
|
558 |
+
| 2.5518 | 20200 | 0.0 | - |
|
559 |
+
| 2.5581 | 20250 | 0.0 | - |
|
560 |
+
| 2.5644 | 20300 | 0.0 | - |
|
561 |
+
| 2.5707 | 20350 | 0.0 | - |
|
562 |
+
| 2.5771 | 20400 | 0.0 | - |
|
563 |
+
| 2.5834 | 20450 | 0.0 | - |
|
564 |
+
| 2.5897 | 20500 | 0.0 | - |
|
565 |
+
| 2.5960 | 20550 | 0.0 | - |
|
566 |
+
| 2.6023 | 20600 | 0.0 | - |
|
567 |
+
| 2.6086 | 20650 | 0.0 | - |
|
568 |
+
| 2.6150 | 20700 | 0.0 | - |
|
569 |
+
| 2.6213 | 20750 | 0.0 | - |
|
570 |
+
| 2.6276 | 20800 | 0.0 | - |
|
571 |
+
| 2.6339 | 20850 | 0.0 | - |
|
572 |
+
| 2.6402 | 20900 | 0.0 | - |
|
573 |
+
| 2.6465 | 20950 | 0.0 | - |
|
574 |
+
| 2.6529 | 21000 | 0.0 | - |
|
575 |
+
| 2.6592 | 21050 | 0.0 | - |
|
576 |
+
| 2.6655 | 21100 | 0.0 | - |
|
577 |
+
| 2.6718 | 21150 | 0.0 | - |
|
578 |
+
| 2.6781 | 21200 | 0.0 | - |
|
579 |
+
| 2.6844 | 21250 | 0.0 | - |
|
580 |
+
| 2.6908 | 21300 | 0.0 | - |
|
581 |
+
| 2.6971 | 21350 | 0.0 | - |
|
582 |
+
| 2.7034 | 21400 | 0.0 | - |
|
583 |
+
| 2.7097 | 21450 | 0.0 | - |
|
584 |
+
| 2.7160 | 21500 | 0.0 | - |
|
585 |
+
| 2.7223 | 21550 | 0.0 | - |
|
586 |
+
| 2.7287 | 21600 | 0.0 | - |
|
587 |
+
| 2.7350 | 21650 | 0.0 | - |
|
588 |
+
| 2.7413 | 21700 | 0.0 | - |
|
589 |
+
| 2.7476 | 21750 | 0.0 | - |
|
590 |
+
| 2.7539 | 21800 | 0.0 | - |
|
591 |
+
| 2.7602 | 21850 | 0.0 | - |
|
592 |
+
| 2.7665 | 21900 | 0.0 | - |
|
593 |
+
| 2.7729 | 21950 | 0.0 | - |
|
594 |
+
| 2.7792 | 22000 | 0.0 | - |
|
595 |
+
| 2.7855 | 22050 | 0.0 | - |
|
596 |
+
| 2.7918 | 22100 | 0.0 | - |
|
597 |
+
| 2.7981 | 22150 | 0.0 | - |
|
598 |
+
| 2.8044 | 22200 | 0.0 | - |
|
599 |
+
| 2.8108 | 22250 | 0.0 | - |
|
600 |
+
| 2.8171 | 22300 | 0.0 | - |
|
601 |
+
| 2.8234 | 22350 | 0.0 | - |
|
602 |
+
| 2.8297 | 22400 | 0.0 | - |
|
603 |
+
| 2.8360 | 22450 | 0.0 | - |
|
604 |
+
| 2.8423 | 22500 | 0.0 | - |
|
605 |
+
| 2.8487 | 22550 | 0.0 | - |
|
606 |
+
| 2.8550 | 22600 | 0.0 | - |
|
607 |
+
| 2.8613 | 22650 | 0.0 | - |
|
608 |
+
| 2.8676 | 22700 | 0.0 | - |
|
609 |
+
| 2.8739 | 22750 | 0.0 | - |
|
610 |
+
| 2.8802 | 22800 | 0.0 | - |
|
611 |
+
| 2.8866 | 22850 | 0.0 | - |
|
612 |
+
| 2.8929 | 22900 | 0.0 | - |
|
613 |
+
| 2.8992 | 22950 | 0.0 | - |
|
614 |
+
| 2.9055 | 23000 | 0.0 | - |
|
615 |
+
| 2.9118 | 23050 | 0.0 | - |
|
616 |
+
| 2.9181 | 23100 | 0.0 | - |
|
617 |
+
| 2.9245 | 23150 | 0.0 | - |
|
618 |
+
| 2.9308 | 23200 | 0.0 | - |
|
619 |
+
| 2.9371 | 23250 | 0.0 | - |
|
620 |
+
| 2.9434 | 23300 | 0.0 | - |
|
621 |
+
| 2.9497 | 23350 | 0.0 | - |
|
622 |
+
| 2.9560 | 23400 | 0.0 | - |
|
623 |
+
| 2.9624 | 23450 | 0.0 | - |
|
624 |
+
| 2.9687 | 23500 | 0.0 | - |
|
625 |
+
| 2.9750 | 23550 | 0.0 | - |
|
626 |
+
| 2.9813 | 23600 | 0.0 | - |
|
627 |
+
| 2.9876 | 23650 | 0.0 | - |
|
628 |
+
| 2.9939 | 23700 | 0.0 | - |
|
629 |
+
| 3.0 | 23748 | - | 0.0128 |
|
630 |
+
| 3.0003 | 23750 | 0.0 | - |
|
631 |
+
| 3.0066 | 23800 | 0.0 | - |
|
632 |
+
| 3.0129 | 23850 | 0.0 | - |
|
633 |
+
| 3.0192 | 23900 | 0.0 | - |
|
634 |
+
| 3.0255 | 23950 | 0.0 | - |
|
635 |
+
| 3.0318 | 24000 | 0.0 | - |
|
636 |
+
| 3.0382 | 24050 | 0.0 | - |
|
637 |
+
| 3.0445 | 24100 | 0.0 | - |
|
638 |
+
| 3.0508 | 24150 | 0.0 | - |
|
639 |
+
| 3.0571 | 24200 | 0.0 | - |
|
640 |
+
| 3.0634 | 24250 | 0.0 | - |
|
641 |
+
| 3.0697 | 24300 | 0.0 | - |
|
642 |
+
| 3.0760 | 24350 | 0.0 | - |
|
643 |
+
| 3.0824 | 24400 | 0.0 | - |
|
644 |
+
| 3.0887 | 24450 | 0.0 | - |
|
645 |
+
| 3.0950 | 24500 | 0.0 | - |
|
646 |
+
| 3.1013 | 24550 | 0.0 | - |
|
647 |
+
| 3.1076 | 24600 | 0.0 | - |
|
648 |
+
| 3.1139 | 24650 | 0.0 | - |
|
649 |
+
| 3.1203 | 24700 | 0.0 | - |
|
650 |
+
| 3.1266 | 24750 | 0.0 | - |
|
651 |
+
| 3.1329 | 24800 | 0.0 | - |
|
652 |
+
| 3.1392 | 24850 | 0.0 | - |
|
653 |
+
| 3.1455 | 24900 | 0.0 | - |
|
654 |
+
| 3.1518 | 24950 | 0.0 | - |
|
655 |
+
| 3.1582 | 25000 | 0.0 | - |
|
656 |
+
| 3.1645 | 25050 | 0.0 | - |
|
657 |
+
| 3.1708 | 25100 | 0.0 | - |
|
658 |
+
| 3.1771 | 25150 | 0.0 | - |
|
659 |
+
| 3.1834 | 25200 | 0.0 | - |
|
660 |
+
| 3.1897 | 25250 | 0.0 | - |
|
661 |
+
| 3.1961 | 25300 | 0.0 | - |
|
662 |
+
| 3.2024 | 25350 | 0.0 | - |
|
663 |
+
| 3.2087 | 25400 | 0.0 | - |
|
664 |
+
| 3.2150 | 25450 | 0.0 | - |
|
665 |
+
| 3.2213 | 25500 | 0.0 | - |
|
666 |
+
| 3.2276 | 25550 | 0.0 | - |
|
667 |
+
| 3.2340 | 25600 | 0.0 | - |
|
668 |
+
| 3.2403 | 25650 | 0.0 | - |
|
669 |
+
| 3.2466 | 25700 | 0.0 | - |
|
670 |
+
| 3.2529 | 25750 | 0.0 | - |
|
671 |
+
| 3.2592 | 25800 | 0.0 | - |
|
672 |
+
| 3.2655 | 25850 | 0.0 | - |
|
673 |
+
| 3.2719 | 25900 | 0.0 | - |
|
674 |
+
| 3.2782 | 25950 | 0.0 | - |
|
675 |
+
| 3.2845 | 26000 | 0.0 | - |
|
676 |
+
| 3.2908 | 26050 | 0.0 | - |
|
677 |
+
| 3.2971 | 26100 | 0.0 | - |
|
678 |
+
| 3.3034 | 26150 | 0.0 | - |
|
679 |
+
| 3.3098 | 26200 | 0.0 | - |
|
680 |
+
| 3.3161 | 26250 | 0.0 | - |
|
681 |
+
| 3.3224 | 26300 | 0.0 | - |
|
682 |
+
| 3.3287 | 26350 | 0.0 | - |
|
683 |
+
| 3.3350 | 26400 | 0.0 | - |
|
684 |
+
| 3.3413 | 26450 | 0.0 | - |
|
685 |
+
| 3.3477 | 26500 | 0.0 | - |
|
686 |
+
| 3.3540 | 26550 | 0.0 | - |
|
687 |
+
| 3.3603 | 26600 | 0.0 | - |
|
688 |
+
| 3.3666 | 26650 | 0.0 | - |
|
689 |
+
| 3.3729 | 26700 | 0.0 | - |
|
690 |
+
| 3.3792 | 26750 | 0.0 | - |
|
691 |
+
| 3.3855 | 26800 | 0.0 | - |
|
692 |
+
| 3.3919 | 26850 | 0.0 | - |
|
693 |
+
| 3.3982 | 26900 | 0.0 | - |
|
694 |
+
| 3.4045 | 26950 | 0.0 | - |
|
695 |
+
| 3.4108 | 27000 | 0.0 | - |
|
696 |
+
| 3.4171 | 27050 | 0.0 | - |
|
697 |
+
| 3.4234 | 27100 | 0.0 | - |
|
698 |
+
| 3.4298 | 27150 | 0.0 | - |
|
699 |
+
| 3.4361 | 27200 | 0.0 | - |
|
700 |
+
| 3.4424 | 27250 | 0.0 | - |
|
701 |
+
| 3.4487 | 27300 | 0.0 | - |
|
702 |
+
| 3.4550 | 27350 | 0.0 | - |
|
703 |
+
| 3.4613 | 27400 | 0.0 | - |
|
704 |
+
| 3.4677 | 27450 | 0.0 | - |
|
705 |
+
| 3.4740 | 27500 | 0.0 | - |
|
706 |
+
| 3.4803 | 27550 | 0.0 | - |
|
707 |
+
| 3.4866 | 27600 | 0.0 | - |
|
708 |
+
| 3.4929 | 27650 | 0.0 | - |
|
709 |
+
| 3.4992 | 27700 | 0.0 | - |
|
710 |
+
| 3.5056 | 27750 | 0.0 | - |
|
711 |
+
| 3.5119 | 27800 | 0.0 | - |
|
712 |
+
| 3.5182 | 27850 | 0.0 | - |
|
713 |
+
| 3.5245 | 27900 | 0.0 | - |
|
714 |
+
| 3.5308 | 27950 | 0.0 | - |
|
715 |
+
| 3.5371 | 28000 | 0.0 | - |
|
716 |
+
| 3.5435 | 28050 | 0.0 | - |
|
717 |
+
| 3.5498 | 28100 | 0.0 | - |
|
718 |
+
| 3.5561 | 28150 | 0.0 | - |
|
719 |
+
| 3.5624 | 28200 | 0.0 | - |
|
720 |
+
| 3.5687 | 28250 | 0.0 | - |
|
721 |
+
| 3.5750 | 28300 | 0.0 | - |
|
722 |
+
| 3.5814 | 28350 | 0.0 | - |
|
723 |
+
| 3.5877 | 28400 | 0.0 | - |
|
724 |
+
| 3.5940 | 28450 | 0.0 | - |
|
725 |
+
| 3.6003 | 28500 | 0.0 | - |
|
726 |
+
| 3.6066 | 28550 | 0.0 | - |
|
727 |
+
| 3.6129 | 28600 | 0.0 | - |
|
728 |
+
| 3.6193 | 28650 | 0.0 | - |
|
729 |
+
| 3.6256 | 28700 | 0.0 | - |
|
730 |
+
| 3.6319 | 28750 | 0.0 | - |
|
731 |
+
| 3.6382 | 28800 | 0.0 | - |
|
732 |
+
| 3.6445 | 28850 | 0.0 | - |
|
733 |
+
| 3.6508 | 28900 | 0.0 | - |
|
734 |
+
| 3.6572 | 28950 | 0.0 | - |
|
735 |
+
| 3.6635 | 29000 | 0.0 | - |
|
736 |
+
| 3.6698 | 29050 | 0.0 | - |
|
737 |
+
| 3.6761 | 29100 | 0.0 | - |
|
738 |
+
| 3.6824 | 29150 | 0.0 | - |
|
739 |
+
| 3.6887 | 29200 | 0.0 | - |
|
740 |
+
| 3.6950 | 29250 | 0.0 | - |
|
741 |
+
| 3.7014 | 29300 | 0.0 | - |
|
742 |
+
| 3.7077 | 29350 | 0.0 | - |
|
743 |
+
| 3.7140 | 29400 | 0.0 | - |
|
744 |
+
| 3.7203 | 29450 | 0.0 | - |
|
745 |
+
| 3.7266 | 29500 | 0.0 | - |
|
746 |
+
| 3.7329 | 29550 | 0.0 | - |
|
747 |
+
| 3.7393 | 29600 | 0.0 | - |
|
748 |
+
| 3.7456 | 29650 | 0.0 | - |
|
749 |
+
| 3.7519 | 29700 | 0.0 | - |
|
750 |
+
| 3.7582 | 29750 | 0.0 | - |
|
751 |
+
| 3.7645 | 29800 | 0.0 | - |
|
752 |
+
| 3.7708 | 29850 | 0.0 | - |
|
753 |
+
| 3.7772 | 29900 | 0.0 | - |
|
754 |
+
| 3.7835 | 29950 | 0.0 | - |
|
755 |
+
| 3.7898 | 30000 | 0.0 | - |
|
756 |
+
| 3.7961 | 30050 | 0.0 | - |
|
757 |
+
| 3.8024 | 30100 | 0.0 | - |
|
758 |
+
| 3.8087 | 30150 | 0.0 | - |
|
759 |
+
| 3.8151 | 30200 | 0.0 | - |
|
760 |
+
| 3.8214 | 30250 | 0.0 | - |
|
761 |
+
| 3.8277 | 30300 | 0.0 | - |
|
762 |
+
| 3.8340 | 30350 | 0.0 | - |
|
763 |
+
| 3.8403 | 30400 | 0.0 | - |
|
764 |
+
| 3.8466 | 30450 | 0.0 | - |
|
765 |
+
| 3.8530 | 30500 | 0.0 | - |
|
766 |
+
| 3.8593 | 30550 | 0.0 | - |
|
767 |
+
| 3.8656 | 30600 | 0.0 | - |
|
768 |
+
| 3.8719 | 30650 | 0.0 | - |
|
769 |
+
| 3.8782 | 30700 | 0.0 | - |
|
770 |
+
| 3.8845 | 30750 | 0.0 | - |
|
771 |
+
| 3.8909 | 30800 | 0.0 | - |
|
772 |
+
| 3.8972 | 30850 | 0.0 | - |
|
773 |
+
| 3.9035 | 30900 | 0.0 | - |
|
774 |
+
| 3.9098 | 30950 | 0.0 | - |
|
775 |
+
| 3.9161 | 31000 | 0.0 | - |
|
776 |
+
| 3.9224 | 31050 | 0.0 | - |
|
777 |
+
| 3.9288 | 31100 | 0.0 | - |
|
778 |
+
| 3.9351 | 31150 | 0.0 | - |
|
779 |
+
| 3.9414 | 31200 | 0.0 | - |
|
780 |
+
| 3.9477 | 31250 | 0.0 | - |
|
781 |
+
| 3.9540 | 31300 | 0.0 | - |
|
782 |
+
| 3.9603 | 31350 | 0.0 | - |
|
783 |
+
| 3.9666 | 31400 | 0.0 | - |
|
784 |
+
| 3.9730 | 31450 | 0.0 | - |
|
785 |
+
| 3.9793 | 31500 | 0.0 | - |
|
786 |
+
| 3.9856 | 31550 | 0.0 | - |
|
787 |
+
| 3.9919 | 31600 | 0.0 | - |
|
788 |
+
| 3.9982 | 31650 | 0.0 | - |
|
789 |
+
| 4.0 | 31664 | - | 0.0117 |
|
790 |
+
|
791 |
+
* The bold row denotes the saved checkpoint.
|
792 |
+
### Framework Versions
|
793 |
+
- Python: 3.9.18
|
794 |
+
- SetFit: 1.0.3
|
795 |
+
- Sentence Transformers: 2.2.1
|
796 |
+
- Transformers: 4.32.1
|
797 |
+
- PyTorch: 1.10.0
|
798 |
+
- Datasets: 2.20.0
|
799 |
+
- Tokenizers: 0.13.3
|
800 |
+
|
801 |
+
## Citation
|
802 |
+
|
803 |
+
### BibTeX
|
804 |
+
```bibtex
|
805 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
806 |
+
doi = {10.48550/ARXIV.2209.11055},
|
807 |
+
url = {https://arxiv.org/abs/2209.11055},
|
808 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
809 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
810 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
811 |
+
publisher = {arXiv},
|
812 |
+
year = {2022},
|
813 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
814 |
+
}
|
815 |
+
```
|
816 |
+
|
817 |
+
<!--
|
818 |
+
## Glossary
|
819 |
+
|
820 |
+
*Clearly define terms in order to be accessible across audiences.*
|
821 |
+
-->
|
822 |
+
|
823 |
+
<!--
|
824 |
+
## Model Card Authors
|
825 |
+
|
826 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
827 |
+
-->
|
828 |
+
|
829 |
+
<!--
|
830 |
+
## Model Card Contact
|
831 |
+
|
832 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
833 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_15832/",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.32.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.1.0",
|
4 |
+
"transformers": "4.13.0",
|
5 |
+
"pytorch": "1.7.0+cu110"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"rag",
|
4 |
+
"general"
|
5 |
+
],
|
6 |
+
"normalize_embeddings": false
|
7 |
+
}
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:842abcdf020371c8af9d2105a22e721863f6a3985b0dc6c3b859b684fb8daa2b
|
3 |
+
size 7039
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef2c2b2ac02dbbb22a00d01cb9acec90633185a9cea94a47231d35d67649ec30
|
3 |
+
size 442537395
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 128,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": "[UNK]"
|
9 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"clean_up_tokenization_spaces": true,
|
4 |
+
"cls_token": "[CLS]",
|
5 |
+
"do_basic_tokenize": true,
|
6 |
+
"do_lower_case": false,
|
7 |
+
"eos_token": "[SEP]",
|
8 |
+
"mask_token": "[MASK]",
|
9 |
+
"max_length": 128,
|
10 |
+
"model_max_length": 512,
|
11 |
+
"never_split": null,
|
12 |
+
"pad_to_multiple_of": null,
|
13 |
+
"pad_token": "[PAD]",
|
14 |
+
"pad_token_type_id": 0,
|
15 |
+
"padding_side": "right",
|
16 |
+
"sep_token": "[SEP]",
|
17 |
+
"stride": 0,
|
18 |
+
"strip_accents": null,
|
19 |
+
"tokenize_chinese_chars": true,
|
20 |
+
"tokenizer_class": "BertTokenizer",
|
21 |
+
"truncation_side": "right",
|
22 |
+
"truncation_strategy": "longest_first",
|
23 |
+
"unk_token": "[UNK]"
|
24 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|