NTIS commited on
Commit
8c305f0
1 Parent(s): 2bd7b62

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,833 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: jhgan/ko-sroberta-multitask
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 제36조에 따른 수탁기관 정보 공시 방법은?
14
+ - text: 원장 인계 전 필요한 절차는?
15
+ - text: 미국에서 I140 허가 통지서 사본을 받으려면 어떻게 해야 하나요?
16
+ - text: 기술자문계획서 작성 시 연구일정과 기술보유자 선발 고려 이유는?
17
+ - text: 연구윤리활동비와 연구실안전관리비의 공통 경비 관리는?
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with jhgan/ko-sroberta-multitask
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.9951690821256038
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with jhgan/ko-sroberta-multitask
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [jhgan/ko-sroberta-multitask](https://huggingface.co/jhgan/ko-sroberta-multitask)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 128 tokens
51
+ - **Number of Classes:** 2 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:--------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | rag | <ul><li>'QR코드 스캔 후 필요한 서류와 절차는?'</li><li>'연구용역사업의 원가계산서 관련, 일정 금액 이상 지출 승인은 누구에게 받나요?'</li><li>'계약부서 승인 없이 지급신청 시 주의할 점은?'</li></ul> |
66
+ | general | <ul><li>'아래 글의 요지 좀 설명해줘.\n \n 다른 문화권에서 온 여자와 데이트. 관계에 대해 좋은 점이 많이 있습니다. 공통된 직업적 관심사, 동일한 성욕, 그리고 서로를 존중한다는 점은 제게는 새로운 관계입니다(항상 남성에 대해 안 좋은 태도를 가진 여자들과만 사귀어 왔죠). 그녀는 저를 정말 사랑해요. \n \n 하지만 장기적인 생존 가능성에 대해 몇 가지 심각한 우려가 있습니다. 하나는 부모님에 관한 것입니다. 제 부모님은 우리가 사귀는 사이라는 사실을 알게 되자 "네가 미국에 머물 수 있는 티켓이라는 걸 기억하라"고 말씀하셨어요. 우리가 진짜 사귀는 사이라는 사실을 알게 된 부모님은 제가 얼마나 버는지 알고 싶어 하셨고(저는 대학원생입니다), 존경의 표시로 은퇴한 부모님을 부양하는 전통에 대해 제가 괜찮은지 확인하고 싶어 하셨습니다(부모님은 그런 도움이 필요 없을 만큼 잘 살고 계시지만요). 여자친구는 이에 대해 부모님의 의견에 동의하며 제가 괜찮지 않다면 돈을 더 벌어서 직접 해야 한다고 말했습니다. 또한 여자친구는 제가 이전에 결혼했고 지금은 이혼했다는 사실을 부모님이 \'절대 알 수 없다\'고 말합니다. \n \n 제가 극복하거나 간과할 수 있었던 다른 문제들도 있지만(한 가지 예로, 그녀는 사교적이지 않지만 저는 사교적입니다), 이러한 문제들이 결합되어 그녀와의 미래는 앞으로 많은 문제가 예고되어 있고 위험하다고 느낍니다. 이전 결혼 생활에서 저는 그런 징후를 무시하고 대가를 치렀고, 그 역사를 반복하고 싶지 않습니다. 동시에 저와 성적으로도 잘 어울리는 파트너가 있다는 것은 정말 좋은 일입니다. \n \n 다른 사람들은 이런 다문화적인 상황에서 어떤 경험을 했는지, 특히 장기적인 경험이 있다면 어떤지 궁금합니다.'</li><li>'너는 누구냐니까'</li><li>'문제와 몇 가지 답 옵션("A", "B", "C", "D"와 연관된)이 주어집니다. 상식적인 지식을 바탕으로 정답을 선택해야 합니다. 연상에 기반한 답은 피하고, 답안 세트는 연상을 넘어서는 상식을 파악하기 위해 의도적으로 선택된 것입니다. \'A\', \'B\', \'C\', \'D\', \'E\' 중 하나를 제외하고는 다른 문자를 생성하지 말고 각 문제에 대해 하나의 답만 작성하세요.\n\n폰이라는 이름은 매우 다재다능할 수 있지만, 모든 부품이 중요한 것은 무엇일까요?\n(A)체스 게임 (B)계획 (C)체스 세트 (D)체커 (E)노스 캐롤라이나'</li></ul> |
67
+
68
+ ## Evaluation
69
+
70
+ ### Metrics
71
+ | Label | Accuracy |
72
+ |:--------|:---------|
73
+ | **all** | 0.9952 |
74
+
75
+ ## Uses
76
+
77
+ ### Direct Use for Inference
78
+
79
+ First install the SetFit library:
80
+
81
+ ```bash
82
+ pip install setfit
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+
87
+ ```python
88
+ from setfit import SetFitModel
89
+
90
+ # Download from the 🤗 Hub
91
+ model = SetFitModel.from_pretrained("NTIS/sroberta-embedding")
92
+ # Run inference
93
+ preds = model("원장 인계 전 필요한 절차는?")
94
+ ```
95
+
96
+ <!--
97
+ ### Downstream Use
98
+
99
+ *List how someone could finetune this model on their own dataset.*
100
+ -->
101
+
102
+ <!--
103
+ ### Out-of-Scope Use
104
+
105
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
106
+ -->
107
+
108
+ <!--
109
+ ## Bias, Risks and Limitations
110
+
111
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
112
+ -->
113
+
114
+ <!--
115
+ ### Recommendations
116
+
117
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
118
+ -->
119
+
120
+ ## Training Details
121
+
122
+ ### Training Set Metrics
123
+ | Training set | Min | Median | Max |
124
+ |:-------------|:----|:-------|:----|
125
+ | Word count | 2 | 24.824 | 722 |
126
+
127
+ | Label | Training Sample Count |
128
+ |:--------|:----------------------|
129
+ | rag | 553 |
130
+ | general | 447 |
131
+
132
+ ### Training Hyperparameters
133
+ - batch_size: (64, 64)
134
+ - num_epochs: (4, 4)
135
+ - max_steps: -1
136
+ - sampling_strategy: oversampling
137
+ - body_learning_rate: (2e-05, 1e-05)
138
+ - head_learning_rate: 0.01
139
+ - loss: CosineSimilarityLoss
140
+ - distance_metric: cosine_distance
141
+ - margin: 0.25
142
+ - end_to_end: False
143
+ - use_amp: False
144
+ - warmup_proportion: 0.1
145
+ - seed: 42
146
+ - eval_max_steps: -1
147
+ - load_best_model_at_end: True
148
+
149
+ ### Training Results
150
+ | Epoch | Step | Training Loss | Validation Loss |
151
+ |:-------:|:---------:|:-------------:|:---------------:|
152
+ | 0.0001 | 1 | 0.2655 | - |
153
+ | 0.0063 | 50 | 0.2091 | - |
154
+ | 0.0126 | 100 | 0.2327 | - |
155
+ | 0.0189 | 150 | 0.1578 | - |
156
+ | 0.0253 | 200 | 0.0836 | - |
157
+ | 0.0316 | 250 | 0.0274 | - |
158
+ | 0.0379 | 300 | 0.0068 | - |
159
+ | 0.0442 | 350 | 0.0032 | - |
160
+ | 0.0505 | 400 | 0.0013 | - |
161
+ | 0.0568 | 450 | 0.0012 | - |
162
+ | 0.0632 | 500 | 0.0009 | - |
163
+ | 0.0695 | 550 | 0.0006 | - |
164
+ | 0.0758 | 600 | 0.0004 | - |
165
+ | 0.0821 | 650 | 0.0004 | - |
166
+ | 0.0884 | 700 | 0.0003 | - |
167
+ | 0.0947 | 750 | 0.0003 | - |
168
+ | 0.1011 | 800 | 0.0003 | - |
169
+ | 0.1074 | 850 | 0.0002 | - |
170
+ | 0.1137 | 900 | 0.0002 | - |
171
+ | 0.1200 | 950 | 0.0002 | - |
172
+ | 0.1263 | 1000 | 0.0002 | - |
173
+ | 0.1326 | 1050 | 0.0001 | - |
174
+ | 0.1390 | 1100 | 0.0001 | - |
175
+ | 0.1453 | 1150 | 0.0001 | - |
176
+ | 0.1516 | 1200 | 0.0001 | - |
177
+ | 0.1579 | 1250 | 0.0001 | - |
178
+ | 0.1642 | 1300 | 0.0001 | - |
179
+ | 0.1705 | 1350 | 0.0001 | - |
180
+ | 0.1769 | 1400 | 0.0001 | - |
181
+ | 0.1832 | 1450 | 0.0001 | - |
182
+ | 0.1895 | 1500 | 0.0001 | - |
183
+ | 0.1958 | 1550 | 0.0001 | - |
184
+ | 0.2021 | 1600 | 0.0 | - |
185
+ | 0.2084 | 1650 | 0.0001 | - |
186
+ | 0.2148 | 1700 | 0.0001 | - |
187
+ | 0.2211 | 1750 | 0.0 | - |
188
+ | 0.2274 | 1800 | 0.0001 | - |
189
+ | 0.2337 | 1850 | 0.0 | - |
190
+ | 0.2400 | 1900 | 0.0 | - |
191
+ | 0.2463 | 1950 | 0.0 | - |
192
+ | 0.2527 | 2000 | 0.0 | - |
193
+ | 0.2590 | 2050 | 0.0 | - |
194
+ | 0.2653 | 2100 | 0.0 | - |
195
+ | 0.2716 | 2150 | 0.0 | - |
196
+ | 0.2779 | 2200 | 0.0 | - |
197
+ | 0.2842 | 2250 | 0.0 | - |
198
+ | 0.2906 | 2300 | 0.0 | - |
199
+ | 0.2969 | 2350 | 0.0 | - |
200
+ | 0.3032 | 2400 | 0.0 | - |
201
+ | 0.3095 | 2450 | 0.0 | - |
202
+ | 0.3158 | 2500 | 0.0 | - |
203
+ | 0.3221 | 2550 | 0.0 | - |
204
+ | 0.3284 | 2600 | 0.0 | - |
205
+ | 0.3348 | 2650 | 0.0 | - |
206
+ | 0.3411 | 2700 | 0.0 | - |
207
+ | 0.3474 | 2750 | 0.0 | - |
208
+ | 0.3537 | 2800 | 0.0 | - |
209
+ | 0.3600 | 2850 | 0.0 | - |
210
+ | 0.3663 | 2900 | 0.0 | - |
211
+ | 0.3727 | 2950 | 0.0 | - |
212
+ | 0.3790 | 3000 | 0.0 | - |
213
+ | 0.3853 | 3050 | 0.0 | - |
214
+ | 0.3916 | 3100 | 0.0 | - |
215
+ | 0.3979 | 3150 | 0.0 | - |
216
+ | 0.4042 | 3200 | 0.0 | - |
217
+ | 0.4106 | 3250 | 0.0 | - |
218
+ | 0.4169 | 3300 | 0.0 | - |
219
+ | 0.4232 | 3350 | 0.0 | - |
220
+ | 0.4295 | 3400 | 0.0 | - |
221
+ | 0.4358 | 3450 | 0.0 | - |
222
+ | 0.4421 | 3500 | 0.0 | - |
223
+ | 0.4485 | 3550 | 0.0 | - |
224
+ | 0.4548 | 3600 | 0.0 | - |
225
+ | 0.4611 | 3650 | 0.0 | - |
226
+ | 0.4674 | 3700 | 0.0 | - |
227
+ | 0.4737 | 3750 | 0.0 | - |
228
+ | 0.4800 | 3800 | 0.0 | - |
229
+ | 0.4864 | 3850 | 0.0 | - |
230
+ | 0.4927 | 3900 | 0.0 | - |
231
+ | 0.4990 | 3950 | 0.0 | - |
232
+ | 0.5053 | 4000 | 0.0 | - |
233
+ | 0.5116 | 4050 | 0.0 | - |
234
+ | 0.5179 | 4100 | 0.0 | - |
235
+ | 0.5243 | 4150 | 0.0 | - |
236
+ | 0.5306 | 4200 | 0.0 | - |
237
+ | 0.5369 | 4250 | 0.0 | - |
238
+ | 0.5432 | 4300 | 0.0 | - |
239
+ | 0.5495 | 4350 | 0.0004 | - |
240
+ | 0.5558 | 4400 | 0.0001 | - |
241
+ | 0.5622 | 4450 | 0.0 | - |
242
+ | 0.5685 | 4500 | 0.0096 | - |
243
+ | 0.5748 | 4550 | 0.0 | - |
244
+ | 0.5811 | 4600 | 0.0 | - |
245
+ | 0.5874 | 4650 | 0.0 | - |
246
+ | 0.5937 | 4700 | 0.0 | - |
247
+ | 0.6001 | 4750 | 0.0 | - |
248
+ | 0.6064 | 4800 | 0.0 | - |
249
+ | 0.6127 | 4850 | 0.0 | - |
250
+ | 0.6190 | 4900 | 0.0 | - |
251
+ | 0.6253 | 4950 | 0.0 | - |
252
+ | 0.6316 | 5000 | 0.0 | - |
253
+ | 0.6379 | 5050 | 0.0 | - |
254
+ | 0.6443 | 5100 | 0.0 | - |
255
+ | 0.6506 | 5150 | 0.0 | - |
256
+ | 0.6569 | 5200 | 0.0 | - |
257
+ | 0.6632 | 5250 | 0.0 | - |
258
+ | 0.6695 | 5300 | 0.0 | - |
259
+ | 0.6758 | 5350 | 0.0 | - |
260
+ | 0.6822 | 5400 | 0.0 | - |
261
+ | 0.6885 | 5450 | 0.0 | - |
262
+ | 0.6948 | 5500 | 0.0 | - |
263
+ | 0.7011 | 5550 | 0.0 | - |
264
+ | 0.7074 | 5600 | 0.0 | - |
265
+ | 0.7137 | 5650 | 0.0 | - |
266
+ | 0.7201 | 5700 | 0.0 | - |
267
+ | 0.7264 | 5750 | 0.0 | - |
268
+ | 0.7327 | 5800 | 0.0 | - |
269
+ | 0.7390 | 5850 | 0.0 | - |
270
+ | 0.7453 | 5900 | 0.0 | - |
271
+ | 0.7516 | 5950 | 0.0 | - |
272
+ | 0.7580 | 6000 | 0.0 | - |
273
+ | 0.7643 | 6050 | 0.0 | - |
274
+ | 0.7706 | 6100 | 0.0 | - |
275
+ | 0.7769 | 6150 | 0.0 | - |
276
+ | 0.7832 | 6200 | 0.0 | - |
277
+ | 0.7895 | 6250 | 0.0 | - |
278
+ | 0.7959 | 6300 | 0.0 | - |
279
+ | 0.8022 | 6350 | 0.0 | - |
280
+ | 0.8085 | 6400 | 0.0 | - |
281
+ | 0.8148 | 6450 | 0.0 | - |
282
+ | 0.8211 | 6500 | 0.0 | - |
283
+ | 0.8274 | 6550 | 0.0 | - |
284
+ | 0.8338 | 6600 | 0.0 | - |
285
+ | 0.8401 | 6650 | 0.0 | - |
286
+ | 0.8464 | 6700 | 0.0 | - |
287
+ | 0.8527 | 6750 | 0.0 | - |
288
+ | 0.8590 | 6800 | 0.0 | - |
289
+ | 0.8653 | 6850 | 0.0 | - |
290
+ | 0.8717 | 6900 | 0.0 | - |
291
+ | 0.8780 | 6950 | 0.0 | - |
292
+ | 0.8843 | 7000 | 0.0 | - |
293
+ | 0.8906 | 7050 | 0.0 | - |
294
+ | 0.8969 | 7100 | 0.0 | - |
295
+ | 0.9032 | 7150 | 0.0 | - |
296
+ | 0.9096 | 7200 | 0.0 | - |
297
+ | 0.9159 | 7250 | 0.0 | - |
298
+ | 0.9222 | 7300 | 0.0 | - |
299
+ | 0.9285 | 7350 | 0.0 | - |
300
+ | 0.9348 | 7400 | 0.0 | - |
301
+ | 0.9411 | 7450 | 0.0 | - |
302
+ | 0.9474 | 7500 | 0.0 | - |
303
+ | 0.9538 | 7550 | 0.0 | - |
304
+ | 0.9601 | 7600 | 0.0 | - |
305
+ | 0.9664 | 7650 | 0.0 | - |
306
+ | 0.9727 | 7700 | 0.0 | - |
307
+ | 0.9790 | 7750 | 0.0 | - |
308
+ | 0.9853 | 7800 | 0.0 | - |
309
+ | 0.9917 | 7850 | 0.0 | - |
310
+ | 0.9980 | 7900 | 0.0 | - |
311
+ | 1.0 | 7916 | - | 0.0096 |
312
+ | 1.0043 | 7950 | 0.0 | - |
313
+ | 1.0106 | 8000 | 0.0 | - |
314
+ | 1.0169 | 8050 | 0.0 | - |
315
+ | 1.0232 | 8100 | 0.0 | - |
316
+ | 1.0296 | 8150 | 0.0 | - |
317
+ | 1.0359 | 8200 | 0.0 | - |
318
+ | 1.0422 | 8250 | 0.0 | - |
319
+ | 1.0485 | 8300 | 0.0 | - |
320
+ | 1.0548 | 8350 | 0.0 | - |
321
+ | 1.0611 | 8400 | 0.0 | - |
322
+ | 1.0675 | 8450 | 0.0 | - |
323
+ | 1.0738 | 8500 | 0.0 | - |
324
+ | 1.0801 | 8550 | 0.0 | - |
325
+ | 1.0864 | 8600 | 0.0 | - |
326
+ | 1.0927 | 8650 | 0.0 | - |
327
+ | 1.0990 | 8700 | 0.0 | - |
328
+ | 1.1054 | 8750 | 0.0 | - |
329
+ | 1.1117 | 8800 | 0.0 | - |
330
+ | 1.1180 | 8850 | 0.0 | - |
331
+ | 1.1243 | 8900 | 0.0 | - |
332
+ | 1.1306 | 8950 | 0.0 | - |
333
+ | 1.1369 | 9000 | 0.0 | - |
334
+ | 1.1433 | 9050 | 0.0 | - |
335
+ | 1.1496 | 9100 | 0.0 | - |
336
+ | 1.1559 | 9150 | 0.0 | - |
337
+ | 1.1622 | 9200 | 0.0 | - |
338
+ | 1.1685 | 9250 | 0.0 | - |
339
+ | 1.1748 | 9300 | 0.0 | - |
340
+ | 1.1812 | 9350 | 0.0 | - |
341
+ | 1.1875 | 9400 | 0.0 | - |
342
+ | 1.1938 | 9450 | 0.0 | - |
343
+ | 1.2001 | 9500 | 0.0 | - |
344
+ | 1.2064 | 9550 | 0.0 | - |
345
+ | 1.2127 | 9600 | 0.0 | - |
346
+ | 1.2191 | 9650 | 0.0 | - |
347
+ | 1.2254 | 9700 | 0.0 | - |
348
+ | 1.2317 | 9750 | 0.0 | - |
349
+ | 1.2380 | 9800 | 0.0 | - |
350
+ | 1.2443 | 9850 | 0.0 | - |
351
+ | 1.2506 | 9900 | 0.0 | - |
352
+ | 1.2569 | 9950 | 0.0 | - |
353
+ | 1.2633 | 10000 | 0.0 | - |
354
+ | 1.2696 | 10050 | 0.0 | - |
355
+ | 1.2759 | 10100 | 0.0 | - |
356
+ | 1.2822 | 10150 | 0.0 | - |
357
+ | 1.2885 | 10200 | 0.0 | - |
358
+ | 1.2948 | 10250 | 0.0 | - |
359
+ | 1.3012 | 10300 | 0.0 | - |
360
+ | 1.3075 | 10350 | 0.0 | - |
361
+ | 1.3138 | 10400 | 0.0 | - |
362
+ | 1.3201 | 10450 | 0.0 | - |
363
+ | 1.3264 | 10500 | 0.0 | - |
364
+ | 1.3327 | 10550 | 0.0 | - |
365
+ | 1.3391 | 10600 | 0.0 | - |
366
+ | 1.3454 | 10650 | 0.0 | - |
367
+ | 1.3517 | 10700 | 0.0 | - |
368
+ | 1.3580 | 10750 | 0.0 | - |
369
+ | 1.3643 | 10800 | 0.0 | - |
370
+ | 1.3706 | 10850 | 0.0 | - |
371
+ | 1.3770 | 10900 | 0.0 | - |
372
+ | 1.3833 | 10950 | 0.0 | - |
373
+ | 1.3896 | 11000 | 0.0 | - |
374
+ | 1.3959 | 11050 | 0.0 | - |
375
+ | 1.4022 | 11100 | 0.0 | - |
376
+ | 1.4085 | 11150 | 0.0 | - |
377
+ | 1.4149 | 11200 | 0.0 | - |
378
+ | 1.4212 | 11250 | 0.0 | - |
379
+ | 1.4275 | 11300 | 0.0 | - |
380
+ | 1.4338 | 11350 | 0.0 | - |
381
+ | 1.4401 | 11400 | 0.0 | - |
382
+ | 1.4464 | 11450 | 0.0 | - |
383
+ | 1.4528 | 11500 | 0.0 | - |
384
+ | 1.4591 | 11550 | 0.0 | - |
385
+ | 1.4654 | 11600 | 0.0 | - |
386
+ | 1.4717 | 11650 | 0.0 | - |
387
+ | 1.4780 | 11700 | 0.0 | - |
388
+ | 1.4843 | 11750 | 0.0 | - |
389
+ | 1.4907 | 11800 | 0.0 | - |
390
+ | 1.4970 | 11850 | 0.0 | - |
391
+ | 1.5033 | 11900 | 0.0 | - |
392
+ | 1.5096 | 11950 | 0.0 | - |
393
+ | 1.5159 | 12000 | 0.0 | - |
394
+ | 1.5222 | 12050 | 0.0 | - |
395
+ | 1.5285 | 12100 | 0.0 | - |
396
+ | 1.5349 | 12150 | 0.0 | - |
397
+ | 1.5412 | 12200 | 0.0 | - |
398
+ | 1.5475 | 12250 | 0.0 | - |
399
+ | 1.5538 | 12300 | 0.0 | - |
400
+ | 1.5601 | 12350 | 0.0 | - |
401
+ | 1.5664 | 12400 | 0.0 | - |
402
+ | 1.5728 | 12450 | 0.0 | - |
403
+ | 1.5791 | 12500 | 0.0 | - |
404
+ | 1.5854 | 12550 | 0.0 | - |
405
+ | 1.5917 | 12600 | 0.0 | - |
406
+ | 1.5980 | 12650 | 0.0 | - |
407
+ | 1.6043 | 12700 | 0.0 | - |
408
+ | 1.6107 | 12750 | 0.0 | - |
409
+ | 1.6170 | 12800 | 0.0 | - |
410
+ | 1.6233 | 12850 | 0.0 | - |
411
+ | 1.6296 | 12900 | 0.0 | - |
412
+ | 1.6359 | 12950 | 0.0 | - |
413
+ | 1.6422 | 13000 | 0.0 | - |
414
+ | 1.6486 | 13050 | 0.0 | - |
415
+ | 1.6549 | 13100 | 0.0 | - |
416
+ | 1.6612 | 13150 | 0.0 | - |
417
+ | 1.6675 | 13200 | 0.0 | - |
418
+ | 1.6738 | 13250 | 0.0 | - |
419
+ | 1.6801 | 13300 | 0.0 | - |
420
+ | 1.6865 | 13350 | 0.0 | - |
421
+ | 1.6928 | 13400 | 0.0 | - |
422
+ | 1.6991 | 13450 | 0.0 | - |
423
+ | 1.7054 | 13500 | 0.0 | - |
424
+ | 1.7117 | 13550 | 0.0 | - |
425
+ | 1.7180 | 13600 | 0.0 | - |
426
+ | 1.7244 | 13650 | 0.0 | - |
427
+ | 1.7307 | 13700 | 0.0 | - |
428
+ | 1.7370 | 13750 | 0.0 | - |
429
+ | 1.7433 | 13800 | 0.0 | - |
430
+ | 1.7496 | 13850 | 0.0 | - |
431
+ | 1.7559 | 13900 | 0.0 | - |
432
+ | 1.7623 | 13950 | 0.0 | - |
433
+ | 1.7686 | 14000 | 0.0 | - |
434
+ | 1.7749 | 14050 | 0.0 | - |
435
+ | 1.7812 | 14100 | 0.0 | - |
436
+ | 1.7875 | 14150 | 0.0 | - |
437
+ | 1.7938 | 14200 | 0.0 | - |
438
+ | 1.8002 | 14250 | 0.0 | - |
439
+ | 1.8065 | 14300 | 0.0 | - |
440
+ | 1.8128 | 14350 | 0.0 | - |
441
+ | 1.8191 | 14400 | 0.0 | - |
442
+ | 1.8254 | 14450 | 0.0 | - |
443
+ | 1.8317 | 14500 | 0.0 | - |
444
+ | 1.8380 | 14550 | 0.0 | - |
445
+ | 1.8444 | 14600 | 0.0 | - |
446
+ | 1.8507 | 14650 | 0.0 | - |
447
+ | 1.8570 | 14700 | 0.0 | - |
448
+ | 1.8633 | 14750 | 0.0 | - |
449
+ | 1.8696 | 14800 | 0.0 | - |
450
+ | 1.8759 | 14850 | 0.0 | - |
451
+ | 1.8823 | 14900 | 0.0 | - |
452
+ | 1.8886 | 14950 | 0.0 | - |
453
+ | 1.8949 | 15000 | 0.0 | - |
454
+ | 1.9012 | 15050 | 0.0 | - |
455
+ | 1.9075 | 15100 | 0.0 | - |
456
+ | 1.9138 | 15150 | 0.0 | - |
457
+ | 1.9202 | 15200 | 0.0 | - |
458
+ | 1.9265 | 15250 | 0.0 | - |
459
+ | 1.9328 | 15300 | 0.0 | - |
460
+ | 1.9391 | 15350 | 0.0 | - |
461
+ | 1.9454 | 15400 | 0.0 | - |
462
+ | 1.9517 | 15450 | 0.0 | - |
463
+ | 1.9581 | 15500 | 0.0 | - |
464
+ | 1.9644 | 15550 | 0.0 | - |
465
+ | 1.9707 | 15600 | 0.0 | - |
466
+ | 1.9770 | 15650 | 0.0 | - |
467
+ | 1.9833 | 15700 | 0.0 | - |
468
+ | 1.9896 | 15750 | 0.0 | - |
469
+ | 1.9960 | 15800 | 0.0 | - |
470
+ | **2.0** | **15832** | **-** | **0.0096** |
471
+ | 2.0023 | 15850 | 0.0 | - |
472
+ | 2.0086 | 15900 | 0.0 | - |
473
+ | 2.0149 | 15950 | 0.0 | - |
474
+ | 2.0212 | 16000 | 0.0 | - |
475
+ | 2.0275 | 16050 | 0.0 | - |
476
+ | 2.0339 | 16100 | 0.0 | - |
477
+ | 2.0402 | 16150 | 0.0 | - |
478
+ | 2.0465 | 16200 | 0.0 | - |
479
+ | 2.0528 | 16250 | 0.0 | - |
480
+ | 2.0591 | 16300 | 0.0 | - |
481
+ | 2.0654 | 16350 | 0.0 | - |
482
+ | 2.0718 | 16400 | 0.0 | - |
483
+ | 2.0781 | 16450 | 0.0 | - |
484
+ | 2.0844 | 16500 | 0.0 | - |
485
+ | 2.0907 | 16550 | 0.0 | - |
486
+ | 2.0970 | 16600 | 0.0 | - |
487
+ | 2.1033 | 16650 | 0.0 | - |
488
+ | 2.1097 | 16700 | 0.0 | - |
489
+ | 2.1160 | 16750 | 0.0 | - |
490
+ | 2.1223 | 16800 | 0.0 | - |
491
+ | 2.1286 | 16850 | 0.0 | - |
492
+ | 2.1349 | 16900 | 0.0 | - |
493
+ | 2.1412 | 16950 | 0.0 | - |
494
+ | 2.1475 | 17000 | 0.0 | - |
495
+ | 2.1539 | 17050 | 0.0 | - |
496
+ | 2.1602 | 17100 | 0.0 | - |
497
+ | 2.1665 | 17150 | 0.0 | - |
498
+ | 2.1728 | 17200 | 0.0 | - |
499
+ | 2.1791 | 17250 | 0.0 | - |
500
+ | 2.1854 | 17300 | 0.0 | - |
501
+ | 2.1918 | 17350 | 0.0 | - |
502
+ | 2.1981 | 17400 | 0.0 | - |
503
+ | 2.2044 | 17450 | 0.0 | - |
504
+ | 2.2107 | 17500 | 0.0 | - |
505
+ | 2.2170 | 17550 | 0.0 | - |
506
+ | 2.2233 | 17600 | 0.0 | - |
507
+ | 2.2297 | 17650 | 0.0 | - |
508
+ | 2.2360 | 17700 | 0.0 | - |
509
+ | 2.2423 | 17750 | 0.0 | - |
510
+ | 2.2486 | 17800 | 0.0 | - |
511
+ | 2.2549 | 17850 | 0.0 | - |
512
+ | 2.2612 | 17900 | 0.0 | - |
513
+ | 2.2676 | 17950 | 0.0 | - |
514
+ | 2.2739 | 18000 | 0.0 | - |
515
+ | 2.2802 | 18050 | 0.0 | - |
516
+ | 2.2865 | 18100 | 0.0 | - |
517
+ | 2.2928 | 18150 | 0.0 | - |
518
+ | 2.2991 | 18200 | 0.0 | - |
519
+ | 2.3055 | 18250 | 0.0 | - |
520
+ | 2.3118 | 18300 | 0.0 | - |
521
+ | 2.3181 | 18350 | 0.0 | - |
522
+ | 2.3244 | 18400 | 0.0 | - |
523
+ | 2.3307 | 18450 | 0.0 | - |
524
+ | 2.3370 | 18500 | 0.0 | - |
525
+ | 2.3434 | 18550 | 0.0 | - |
526
+ | 2.3497 | 18600 | 0.0 | - |
527
+ | 2.3560 | 18650 | 0.0 | - |
528
+ | 2.3623 | 18700 | 0.0 | - |
529
+ | 2.3686 | 18750 | 0.0 | - |
530
+ | 2.3749 | 18800 | 0.0 | - |
531
+ | 2.3813 | 18850 | 0.0 | - |
532
+ | 2.3876 | 18900 | 0.0 | - |
533
+ | 2.3939 | 18950 | 0.0 | - |
534
+ | 2.4002 | 19000 | 0.0 | - |
535
+ | 2.4065 | 19050 | 0.0 | - |
536
+ | 2.4128 | 19100 | 0.0 | - |
537
+ | 2.4192 | 19150 | 0.0 | - |
538
+ | 2.4255 | 19200 | 0.0 | - |
539
+ | 2.4318 | 19250 | 0.0 | - |
540
+ | 2.4381 | 19300 | 0.0 | - |
541
+ | 2.4444 | 19350 | 0.0 | - |
542
+ | 2.4507 | 19400 | 0.0 | - |
543
+ | 2.4570 | 19450 | 0.0 | - |
544
+ | 2.4634 | 19500 | 0.0 | - |
545
+ | 2.4697 | 19550 | 0.0 | - |
546
+ | 2.4760 | 19600 | 0.0 | - |
547
+ | 2.4823 | 19650 | 0.0 | - |
548
+ | 2.4886 | 19700 | 0.0 | - |
549
+ | 2.4949 | 19750 | 0.0 | - |
550
+ | 2.5013 | 19800 | 0.0 | - |
551
+ | 2.5076 | 19850 | 0.0 | - |
552
+ | 2.5139 | 19900 | 0.0 | - |
553
+ | 2.5202 | 19950 | 0.0 | - |
554
+ | 2.5265 | 20000 | 0.0 | - |
555
+ | 2.5328 | 20050 | 0.0 | - |
556
+ | 2.5392 | 20100 | 0.0 | - |
557
+ | 2.5455 | 20150 | 0.0 | - |
558
+ | 2.5518 | 20200 | 0.0 | - |
559
+ | 2.5581 | 20250 | 0.0 | - |
560
+ | 2.5644 | 20300 | 0.0 | - |
561
+ | 2.5707 | 20350 | 0.0 | - |
562
+ | 2.5771 | 20400 | 0.0 | - |
563
+ | 2.5834 | 20450 | 0.0 | - |
564
+ | 2.5897 | 20500 | 0.0 | - |
565
+ | 2.5960 | 20550 | 0.0 | - |
566
+ | 2.6023 | 20600 | 0.0 | - |
567
+ | 2.6086 | 20650 | 0.0 | - |
568
+ | 2.6150 | 20700 | 0.0 | - |
569
+ | 2.6213 | 20750 | 0.0 | - |
570
+ | 2.6276 | 20800 | 0.0 | - |
571
+ | 2.6339 | 20850 | 0.0 | - |
572
+ | 2.6402 | 20900 | 0.0 | - |
573
+ | 2.6465 | 20950 | 0.0 | - |
574
+ | 2.6529 | 21000 | 0.0 | - |
575
+ | 2.6592 | 21050 | 0.0 | - |
576
+ | 2.6655 | 21100 | 0.0 | - |
577
+ | 2.6718 | 21150 | 0.0 | - |
578
+ | 2.6781 | 21200 | 0.0 | - |
579
+ | 2.6844 | 21250 | 0.0 | - |
580
+ | 2.6908 | 21300 | 0.0 | - |
581
+ | 2.6971 | 21350 | 0.0 | - |
582
+ | 2.7034 | 21400 | 0.0 | - |
583
+ | 2.7097 | 21450 | 0.0 | - |
584
+ | 2.7160 | 21500 | 0.0 | - |
585
+ | 2.7223 | 21550 | 0.0 | - |
586
+ | 2.7287 | 21600 | 0.0 | - |
587
+ | 2.7350 | 21650 | 0.0 | - |
588
+ | 2.7413 | 21700 | 0.0 | - |
589
+ | 2.7476 | 21750 | 0.0 | - |
590
+ | 2.7539 | 21800 | 0.0 | - |
591
+ | 2.7602 | 21850 | 0.0 | - |
592
+ | 2.7665 | 21900 | 0.0 | - |
593
+ | 2.7729 | 21950 | 0.0 | - |
594
+ | 2.7792 | 22000 | 0.0 | - |
595
+ | 2.7855 | 22050 | 0.0 | - |
596
+ | 2.7918 | 22100 | 0.0 | - |
597
+ | 2.7981 | 22150 | 0.0 | - |
598
+ | 2.8044 | 22200 | 0.0 | - |
599
+ | 2.8108 | 22250 | 0.0 | - |
600
+ | 2.8171 | 22300 | 0.0 | - |
601
+ | 2.8234 | 22350 | 0.0 | - |
602
+ | 2.8297 | 22400 | 0.0 | - |
603
+ | 2.8360 | 22450 | 0.0 | - |
604
+ | 2.8423 | 22500 | 0.0 | - |
605
+ | 2.8487 | 22550 | 0.0 | - |
606
+ | 2.8550 | 22600 | 0.0 | - |
607
+ | 2.8613 | 22650 | 0.0 | - |
608
+ | 2.8676 | 22700 | 0.0 | - |
609
+ | 2.8739 | 22750 | 0.0 | - |
610
+ | 2.8802 | 22800 | 0.0 | - |
611
+ | 2.8866 | 22850 | 0.0 | - |
612
+ | 2.8929 | 22900 | 0.0 | - |
613
+ | 2.8992 | 22950 | 0.0 | - |
614
+ | 2.9055 | 23000 | 0.0 | - |
615
+ | 2.9118 | 23050 | 0.0 | - |
616
+ | 2.9181 | 23100 | 0.0 | - |
617
+ | 2.9245 | 23150 | 0.0 | - |
618
+ | 2.9308 | 23200 | 0.0 | - |
619
+ | 2.9371 | 23250 | 0.0 | - |
620
+ | 2.9434 | 23300 | 0.0 | - |
621
+ | 2.9497 | 23350 | 0.0 | - |
622
+ | 2.9560 | 23400 | 0.0 | - |
623
+ | 2.9624 | 23450 | 0.0 | - |
624
+ | 2.9687 | 23500 | 0.0 | - |
625
+ | 2.9750 | 23550 | 0.0 | - |
626
+ | 2.9813 | 23600 | 0.0 | - |
627
+ | 2.9876 | 23650 | 0.0 | - |
628
+ | 2.9939 | 23700 | 0.0 | - |
629
+ | 3.0 | 23748 | - | 0.0128 |
630
+ | 3.0003 | 23750 | 0.0 | - |
631
+ | 3.0066 | 23800 | 0.0 | - |
632
+ | 3.0129 | 23850 | 0.0 | - |
633
+ | 3.0192 | 23900 | 0.0 | - |
634
+ | 3.0255 | 23950 | 0.0 | - |
635
+ | 3.0318 | 24000 | 0.0 | - |
636
+ | 3.0382 | 24050 | 0.0 | - |
637
+ | 3.0445 | 24100 | 0.0 | - |
638
+ | 3.0508 | 24150 | 0.0 | - |
639
+ | 3.0571 | 24200 | 0.0 | - |
640
+ | 3.0634 | 24250 | 0.0 | - |
641
+ | 3.0697 | 24300 | 0.0 | - |
642
+ | 3.0760 | 24350 | 0.0 | - |
643
+ | 3.0824 | 24400 | 0.0 | - |
644
+ | 3.0887 | 24450 | 0.0 | - |
645
+ | 3.0950 | 24500 | 0.0 | - |
646
+ | 3.1013 | 24550 | 0.0 | - |
647
+ | 3.1076 | 24600 | 0.0 | - |
648
+ | 3.1139 | 24650 | 0.0 | - |
649
+ | 3.1203 | 24700 | 0.0 | - |
650
+ | 3.1266 | 24750 | 0.0 | - |
651
+ | 3.1329 | 24800 | 0.0 | - |
652
+ | 3.1392 | 24850 | 0.0 | - |
653
+ | 3.1455 | 24900 | 0.0 | - |
654
+ | 3.1518 | 24950 | 0.0 | - |
655
+ | 3.1582 | 25000 | 0.0 | - |
656
+ | 3.1645 | 25050 | 0.0 | - |
657
+ | 3.1708 | 25100 | 0.0 | - |
658
+ | 3.1771 | 25150 | 0.0 | - |
659
+ | 3.1834 | 25200 | 0.0 | - |
660
+ | 3.1897 | 25250 | 0.0 | - |
661
+ | 3.1961 | 25300 | 0.0 | - |
662
+ | 3.2024 | 25350 | 0.0 | - |
663
+ | 3.2087 | 25400 | 0.0 | - |
664
+ | 3.2150 | 25450 | 0.0 | - |
665
+ | 3.2213 | 25500 | 0.0 | - |
666
+ | 3.2276 | 25550 | 0.0 | - |
667
+ | 3.2340 | 25600 | 0.0 | - |
668
+ | 3.2403 | 25650 | 0.0 | - |
669
+ | 3.2466 | 25700 | 0.0 | - |
670
+ | 3.2529 | 25750 | 0.0 | - |
671
+ | 3.2592 | 25800 | 0.0 | - |
672
+ | 3.2655 | 25850 | 0.0 | - |
673
+ | 3.2719 | 25900 | 0.0 | - |
674
+ | 3.2782 | 25950 | 0.0 | - |
675
+ | 3.2845 | 26000 | 0.0 | - |
676
+ | 3.2908 | 26050 | 0.0 | - |
677
+ | 3.2971 | 26100 | 0.0 | - |
678
+ | 3.3034 | 26150 | 0.0 | - |
679
+ | 3.3098 | 26200 | 0.0 | - |
680
+ | 3.3161 | 26250 | 0.0 | - |
681
+ | 3.3224 | 26300 | 0.0 | - |
682
+ | 3.3287 | 26350 | 0.0 | - |
683
+ | 3.3350 | 26400 | 0.0 | - |
684
+ | 3.3413 | 26450 | 0.0 | - |
685
+ | 3.3477 | 26500 | 0.0 | - |
686
+ | 3.3540 | 26550 | 0.0 | - |
687
+ | 3.3603 | 26600 | 0.0 | - |
688
+ | 3.3666 | 26650 | 0.0 | - |
689
+ | 3.3729 | 26700 | 0.0 | - |
690
+ | 3.3792 | 26750 | 0.0 | - |
691
+ | 3.3855 | 26800 | 0.0 | - |
692
+ | 3.3919 | 26850 | 0.0 | - |
693
+ | 3.3982 | 26900 | 0.0 | - |
694
+ | 3.4045 | 26950 | 0.0 | - |
695
+ | 3.4108 | 27000 | 0.0 | - |
696
+ | 3.4171 | 27050 | 0.0 | - |
697
+ | 3.4234 | 27100 | 0.0 | - |
698
+ | 3.4298 | 27150 | 0.0 | - |
699
+ | 3.4361 | 27200 | 0.0 | - |
700
+ | 3.4424 | 27250 | 0.0 | - |
701
+ | 3.4487 | 27300 | 0.0 | - |
702
+ | 3.4550 | 27350 | 0.0 | - |
703
+ | 3.4613 | 27400 | 0.0 | - |
704
+ | 3.4677 | 27450 | 0.0 | - |
705
+ | 3.4740 | 27500 | 0.0 | - |
706
+ | 3.4803 | 27550 | 0.0 | - |
707
+ | 3.4866 | 27600 | 0.0 | - |
708
+ | 3.4929 | 27650 | 0.0 | - |
709
+ | 3.4992 | 27700 | 0.0 | - |
710
+ | 3.5056 | 27750 | 0.0 | - |
711
+ | 3.5119 | 27800 | 0.0 | - |
712
+ | 3.5182 | 27850 | 0.0 | - |
713
+ | 3.5245 | 27900 | 0.0 | - |
714
+ | 3.5308 | 27950 | 0.0 | - |
715
+ | 3.5371 | 28000 | 0.0 | - |
716
+ | 3.5435 | 28050 | 0.0 | - |
717
+ | 3.5498 | 28100 | 0.0 | - |
718
+ | 3.5561 | 28150 | 0.0 | - |
719
+ | 3.5624 | 28200 | 0.0 | - |
720
+ | 3.5687 | 28250 | 0.0 | - |
721
+ | 3.5750 | 28300 | 0.0 | - |
722
+ | 3.5814 | 28350 | 0.0 | - |
723
+ | 3.5877 | 28400 | 0.0 | - |
724
+ | 3.5940 | 28450 | 0.0 | - |
725
+ | 3.6003 | 28500 | 0.0 | - |
726
+ | 3.6066 | 28550 | 0.0 | - |
727
+ | 3.6129 | 28600 | 0.0 | - |
728
+ | 3.6193 | 28650 | 0.0 | - |
729
+ | 3.6256 | 28700 | 0.0 | - |
730
+ | 3.6319 | 28750 | 0.0 | - |
731
+ | 3.6382 | 28800 | 0.0 | - |
732
+ | 3.6445 | 28850 | 0.0 | - |
733
+ | 3.6508 | 28900 | 0.0 | - |
734
+ | 3.6572 | 28950 | 0.0 | - |
735
+ | 3.6635 | 29000 | 0.0 | - |
736
+ | 3.6698 | 29050 | 0.0 | - |
737
+ | 3.6761 | 29100 | 0.0 | - |
738
+ | 3.6824 | 29150 | 0.0 | - |
739
+ | 3.6887 | 29200 | 0.0 | - |
740
+ | 3.6950 | 29250 | 0.0 | - |
741
+ | 3.7014 | 29300 | 0.0 | - |
742
+ | 3.7077 | 29350 | 0.0 | - |
743
+ | 3.7140 | 29400 | 0.0 | - |
744
+ | 3.7203 | 29450 | 0.0 | - |
745
+ | 3.7266 | 29500 | 0.0 | - |
746
+ | 3.7329 | 29550 | 0.0 | - |
747
+ | 3.7393 | 29600 | 0.0 | - |
748
+ | 3.7456 | 29650 | 0.0 | - |
749
+ | 3.7519 | 29700 | 0.0 | - |
750
+ | 3.7582 | 29750 | 0.0 | - |
751
+ | 3.7645 | 29800 | 0.0 | - |
752
+ | 3.7708 | 29850 | 0.0 | - |
753
+ | 3.7772 | 29900 | 0.0 | - |
754
+ | 3.7835 | 29950 | 0.0 | - |
755
+ | 3.7898 | 30000 | 0.0 | - |
756
+ | 3.7961 | 30050 | 0.0 | - |
757
+ | 3.8024 | 30100 | 0.0 | - |
758
+ | 3.8087 | 30150 | 0.0 | - |
759
+ | 3.8151 | 30200 | 0.0 | - |
760
+ | 3.8214 | 30250 | 0.0 | - |
761
+ | 3.8277 | 30300 | 0.0 | - |
762
+ | 3.8340 | 30350 | 0.0 | - |
763
+ | 3.8403 | 30400 | 0.0 | - |
764
+ | 3.8466 | 30450 | 0.0 | - |
765
+ | 3.8530 | 30500 | 0.0 | - |
766
+ | 3.8593 | 30550 | 0.0 | - |
767
+ | 3.8656 | 30600 | 0.0 | - |
768
+ | 3.8719 | 30650 | 0.0 | - |
769
+ | 3.8782 | 30700 | 0.0 | - |
770
+ | 3.8845 | 30750 | 0.0 | - |
771
+ | 3.8909 | 30800 | 0.0 | - |
772
+ | 3.8972 | 30850 | 0.0 | - |
773
+ | 3.9035 | 30900 | 0.0 | - |
774
+ | 3.9098 | 30950 | 0.0 | - |
775
+ | 3.9161 | 31000 | 0.0 | - |
776
+ | 3.9224 | 31050 | 0.0 | - |
777
+ | 3.9288 | 31100 | 0.0 | - |
778
+ | 3.9351 | 31150 | 0.0 | - |
779
+ | 3.9414 | 31200 | 0.0 | - |
780
+ | 3.9477 | 31250 | 0.0 | - |
781
+ | 3.9540 | 31300 | 0.0 | - |
782
+ | 3.9603 | 31350 | 0.0 | - |
783
+ | 3.9666 | 31400 | 0.0 | - |
784
+ | 3.9730 | 31450 | 0.0 | - |
785
+ | 3.9793 | 31500 | 0.0 | - |
786
+ | 3.9856 | 31550 | 0.0 | - |
787
+ | 3.9919 | 31600 | 0.0 | - |
788
+ | 3.9982 | 31650 | 0.0 | - |
789
+ | 4.0 | 31664 | - | 0.0117 |
790
+
791
+ * The bold row denotes the saved checkpoint.
792
+ ### Framework Versions
793
+ - Python: 3.9.18
794
+ - SetFit: 1.0.3
795
+ - Sentence Transformers: 2.2.1
796
+ - Transformers: 4.32.1
797
+ - PyTorch: 1.10.0
798
+ - Datasets: 2.20.0
799
+ - Tokenizers: 0.13.3
800
+
801
+ ## Citation
802
+
803
+ ### BibTeX
804
+ ```bibtex
805
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
806
+ doi = {10.48550/ARXIV.2209.11055},
807
+ url = {https://arxiv.org/abs/2209.11055},
808
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
809
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
810
+ title = {Efficient Few-Shot Learning Without Prompts},
811
+ publisher = {arXiv},
812
+ year = {2022},
813
+ copyright = {Creative Commons Attribution 4.0 International}
814
+ }
815
+ ```
816
+
817
+ <!--
818
+ ## Glossary
819
+
820
+ *Clearly define terms in order to be accessible across audiences.*
821
+ -->
822
+
823
+ <!--
824
+ ## Model Card Authors
825
+
826
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
827
+ -->
828
+
829
+ <!--
830
+ ## Model Card Contact
831
+
832
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
833
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "checkpoints/step_15832/",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.32.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.1.0",
4
+ "transformers": "4.13.0",
5
+ "pytorch": "1.7.0+cu110"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "rag",
4
+ "general"
5
+ ],
6
+ "normalize_embeddings": false
7
+ }
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:842abcdf020371c8af9d2105a22e721863f6a3985b0dc6c3b859b684fb8daa2b
3
+ size 7039
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef2c2b2ac02dbbb22a00d01cb9acec90633185a9cea94a47231d35d67649ec30
3
+ size 442537395
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "cls_token": "[CLS]",
4
+ "eos_token": "[SEP]",
5
+ "mask_token": "[MASK]",
6
+ "pad_token": "[PAD]",
7
+ "sep_token": "[SEP]",
8
+ "unk_token": "[UNK]"
9
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "[CLS]",
3
+ "clean_up_tokenization_spaces": true,
4
+ "cls_token": "[CLS]",
5
+ "do_basic_tokenize": true,
6
+ "do_lower_case": false,
7
+ "eos_token": "[SEP]",
8
+ "mask_token": "[MASK]",
9
+ "max_length": 128,
10
+ "model_max_length": 512,
11
+ "never_split": null,
12
+ "pad_to_multiple_of": null,
13
+ "pad_token": "[PAD]",
14
+ "pad_token_type_id": 0,
15
+ "padding_side": "right",
16
+ "sep_token": "[SEP]",
17
+ "stride": 0,
18
+ "strip_accents": null,
19
+ "tokenize_chinese_chars": true,
20
+ "tokenizer_class": "BertTokenizer",
21
+ "truncation_side": "right",
22
+ "truncation_strategy": "longest_first",
23
+ "unk_token": "[UNK]"
24
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff