nhanv commited on
Commit
886e05a
1 Parent(s): 2ff2d9c

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - ja
5
+ - en
6
+ pipeline_tag: text-generation
7
+ datasets:
8
+ - NTQAI/sharegpt-clean-ja
9
+ ---
10
+
11
+ # chatntq-7b-jpntuned Card
12
+
13
+ ## Model Details
14
+
15
+ ChatNTQ-7B-Japanese is a chat assistant trained by fine-tuning [BlinkDL/rwkv-4-world](https://huggingface.co/BlinkDL/rwkv-4-world) on user-shared conversations collected from ShareGPT.
16
+
17
+ - **Developed by:** [NTQAI](https://huggingface.co/NTQAI)
18
+ - **Model type:** An auto-regressive language model based on the transformer architecture.
19
+ - **License:** Commercial license
20
+ - **Finetuned from model:** [BlinkDL/rwkv-4-world/JPNtuned-7B-v1](https://huggingface.co/BlinkDL/rwkv-4-world/blob/main/RWKV-4-World-JPNtuned-7B-v1-OnlyForTest_76%25_trained-20230714-ctx4096.pth).
21
+
22
+ ## Uses
23
+
24
+ ```python
25
+ import os, gc, copy, torch
26
+ import gradio as gr
27
+ os.environ["RWKV_JIT_ON"] = '1'
28
+ os.environ["RWKV_CUDA_ON"] = '1'
29
+ from rwkv.model import RWKV
30
+ model_path = "chatntq-7b-jpntuned/ChatNTQ-7B-RWKV-world-JPNtuned-ctx2048.pth"
31
+ WORD_NAME = "rwkv_vocab_v20230424" # copy rwkv_vocab_v20230424.txt in ChatNTQ-7B-Japanese to the same folder test
32
+ ctx_limit = 1024
33
+ model = RWKV(model=model_path, strategy='cuda fp16i8 *24 -> cuda fp16')
34
+ from rwkv.utils import PIPELINE, PIPELINE_ARGS
35
+ pipeline = PIPELINE(model, WORD_NAME)
36
+ def generate_prompt(instruction):
37
+ return f"\x00Human: {instruction}\x00Assistant: "
38
+
39
+ def evaluate(
40
+ prompt,
41
+ token_count=1024,
42
+ temperature=1.2,
43
+ top_p=0.5,
44
+ presencePenalty = 0.4,
45
+ countPenalty = 0.4,
46
+ ):
47
+ args = PIPELINE_ARGS(temperature = max(0.2, float(temperature)), top_p = float(top_p),
48
+ alpha_frequency = countPenalty,
49
+ alpha_presence = presencePenalty,
50
+ token_ban = [], # ban the generation of some tokens
51
+ token_stop = [0,1]) # stop generation whenever you see any token here
52
+
53
+ all_tokens = []
54
+ out_last = 0
55
+ out_str = ''
56
+ occurrence = {}
57
+ state = None
58
+ prompt = generate_prompt(prompt)
59
+ print(prompt)
60
+ for i in range(int(token_count)):
61
+ out, state = model.forward(pipeline.encode(prompt)[-ctx_limit:] if i == 0 else [token], state)
62
+ for n in occurrence:
63
+ out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)
64
+
65
+ token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
66
+ if token in args.token_stop:
67
+ break
68
+ all_tokens += [token]
69
+ if token not in occurrence:
70
+ occurrence[token] = 1
71
+ else:
72
+ occurrence[token] += 1
73
+
74
+ tmp = pipeline.decode(all_tokens[out_last:])
75
+ if '\ufffd' not in tmp:
76
+ out_str += tmp
77
+ out_last = i + 1
78
+ gc.collect()
79
+ torch.cuda.empty_cache()
80
+ return out_str
81
+ if __name__ == "__main__":
82
+ question = "東京の人口はどれくらいですか?"
83
+ response = evaluate(question)
84
+ ```
85
+ ### Contact information
86
+ For personal communication related to this project, please contact Nha Nguyen Van (nha282@gmail.com).