File size: 1,340 Bytes
68d48cb 5f6b1f0 68d48cb 5f6b1f0 5ef8cf0 cd49073 c9e7d15 5f6b1f0 5ef8cf0 5f6b1f0 1504e8c 1858733 86ef865 5f6b1f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
---
license: creativeml-openrail-m
datasets:
- Nacholmo/controlnet-closesttoblack
---
# Controlnet model for use in qr codes
Conditioning only 15% of the pixels closest to black, so as not to affect the luminance of the rest of the image. ̶I̶t̶ ̶g̶o̶e̶s̶ ̶1̶5̶0̶0̶ ̶s̶t̶e̶p̶s̶ ̶s̶o̶ ̶f̶a̶r̶ ̶a̶n̶d̶ ̶i̶s̶ ̶q̶u̶i̶t̶e̶ ̶p̶r̶o̶m̶i̶s̶i̶n̶g̶
### The concept seems to work, now I have to improve the dataset and do the training again, this week I think I will. Also I want to make a Preprocessor to have a blur slider
1500.ckpt is the automatic1111 controlnet extension compatible weight, 1500.yaml is also important.
## 1.5k steps cherry picked examples (not scannable yet)
Steps: 50,
Sampler: DPM++ 2M Karras,
ControlNet:
preprocessor: none,
model: 1500 [dafc5f57],
weight: 1.5,
starting/ending: (0, 0.9),
controlNet is more important
![1.png](https://s3.amazonaws.com/moonup/production/uploads/62fb24dc86456e533456ebd1/8TmIVPjW_fIpOQYYLCmUu.png)
![2.png](https://s3.amazonaws.com/moonup/production/uploads/62fb24dc86456e533456ebd1/pxMIsT-0GepdXgdsyDknl.png)
![3.png](https://s3.amazonaws.com/moonup/production/uploads/62fb24dc86456e533456ebd1/dJ0OaHZ3zKJKhaDYZYCCn.png)
![4.png](https://s3.amazonaws.com/moonup/production/uploads/62fb24dc86456e533456ebd1/iGzLqg7sFrsyQKYs5f4PN.png)
|