NahedAbdelgaber commited on
Commit
18e82b2
1 Parent(s): de3952b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +31 -14
README.md CHANGED
@@ -1,14 +1,31 @@
1
- card_data = ModelCardData(
2
- language='en',
3
-
4
- model_name='ner_base_model',
5
- eval_results = [
6
- EvalResult(
7
- task_type='image-classification',
8
- metric_type='f1',
9
- metric_value=0.61
10
- )
11
- ]
12
- )
13
- card = ModelCard.from_template(card_data)
14
- card.data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - Satellite-Instrument-NER
5
+ ---
6
+ # bert-base-NER
7
+
8
+ ## Model description
9
+
10
+ **bert-base-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves ** F1 0.61** for the NER task. It has been trained to recognize two types of entities: instrument and satellite.
11
+
12
+ Specifically, this model is a *bert-base-cased* model that was fine-tuned on Satellite-Instrument-NER dataset.
13
+
14
+
15
+
16
+ ## Intended uses & limitations
17
+
18
+ #### How to use
19
+
20
+ You can use this model with Transformers *pipeline* for NER.
21
+
22
+ ```python
23
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
24
+ from transformers import pipeline
25
+ tokenizer = AutoTokenizer.from_pretrained("NahedAbdelgaber/ner_base_model")
26
+ model = AutoModelForTokenClassification.from_pretrained("NahedAbdelgaber/ner_base_model")
27
+ nlp = pipeline("ner", model=model, tokenizer=tokenizer)
28
+ example = "Centroid Moment Tensor Global Navigation Satellite System GNSS"
29
+ ner_results = nlp(example)
30
+ print(ner_results)
31
+ ```