File size: 1,710 Bytes
3bbcfe1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import os
import json

import torch
from peft import PeftModel, LoraConfig

import transformers

assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM


LORA_WEIGHTS = os.environ.get("LORA_WEIGTHS", "tloen/alpaca-lora-7b")
OUTPUT_DIR = os.environ.get("OUTPUT_DIR", "./hf_ckpt")

tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")

base_model = LlamaForCausalLM.from_pretrained(
    "decapoda-research/llama-7b-hf",
    load_in_8bit=False,
    torch_dtype=torch.float16,
    device_map={"": "cpu"},
)

first_weight = base_model.model.layers[0].self_attn.q_proj.weight
first_weight_old = first_weight.clone()

lora_model = PeftModel.from_pretrained(
    base_model,
    LORA_WEIGHTS,
    device_map={"": "cpu"},
    torch_dtype=torch.float16,
)

lora_weight = lora_model.base_model.model.model.layers[0].self_attn.q_proj.weight

assert torch.allclose(first_weight_old, first_weight)

# merge weights
for layer in lora_model.base_model.model.model.layers:
    layer.self_attn.q_proj.merge_weights = True
    layer.self_attn.v_proj.merge_weights = True

lora_model.train(False)

# did we do anything?
assert not torch.allclose(first_weight_old, first_weight)

lora_model_sd = lora_model.state_dict()
deloreanized_sd = {
    k.replace("base_model.model.", ""): v
    for k, v in lora_model_sd.items()
    if "lora" not in k
}

LlamaForCausalLM.save_pretrained(
    base_model, OUTPUT_DIR, state_dict=deloreanized_sd, max_shard_size="400MB"
)