File size: 38,200 Bytes
6b50e33 5037034 12401f3 5037034 4fdf62e 12401f3 5037034 6b50e33 e146b30 45067c9 e146b30 45067c9 e8fd759 5037034 e8fd759 e146b30 70be1e2 774b58a 70be1e2 5037034 774b58a 70be1e2 1df2555 70be1e2 5037034 b2da5f0 70be1e2 cc0a8ad 852a586 70be1e2 5037034 e146b30 96a42d6 e146b30 5037034 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 e146b30 e8fd759 5037034 e8fd759 5037034 e8fd759 e146b30 e8fd759 e146b30 e8fd759 45067c9 96a42d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
---
license: openrail
language:
- dan
- eng
- fao
- fin
- isl
- nno
- nob
- sma
- sme
- smj
- smn
- sms
- swe
library_name: fasttext
tags:
- text-classification
- language-identification
- language-detection
datasets:
- tatoeba
---
# NB-NORDIC-LID
This repo contains models for the identification of language in text (also referred to as language detection). It is based on Fasttext and designed with the Nordic languages in mind, including several Sámi languages. It comes in two flavours, `nb-nordic-lid`, a model that identifies between the 12 most common languages in the Nordic countries (plus English), and `nb-nordic-lid.159`, a model that extends that list to 159 languages of the world. Moreover, each of them come in large and small (quantized) versions.
| Model | Size | Precision | Recall | F1-Score | Support |
|:----------------------------|:------------------|------------:|---------:|-----------:|----------:|
| [`nb-nordic-lid.bin`](https://huggingface.co/NbAiLab/nb-nordic-lid/resolve/main/nb-nordic-lid.bin) (large) | 274 MB | 0.9901 | 0.9900 | 0.9900 | 5500 |
| [`nb-nordic-lid.ftz`](https://huggingface.co/NbAiLab/nb-nordic-lid/resolve/main/nb-nordic-lid.ftz) (small) | 1.87 MB | 0.9889 | 0.9890 | 0.9890 | 5500 |
| [`nb-nordic-lid.159.bin`](https://huggingface.co/NbAiLab/nb-nordic-lid/resolve/main/nb-nordic-lid.159.bin) (large)| 9.63 GB | 0.9434 | 0.9528 | 0.9476 | 44049 |
| [`nb-nordic-lid.159.ftz`](https://huggingface.co/NbAiLab/nb-nordic-lid/resolve/main/nb-nordic-lid.159.ftz) (small)| 11.2 MB | 0.9275 | 0.9399 | 0.9327 | 44049 |
## Usage
After download, the models can be used through the Fasttext library:
```python
from huggingface_hub import hf_hub_download
import fasttext
model_name = "nb-nordic-lid.ftz"
model = fasttext.load_model(hf_hub_download("NbAiLab/nb-nordic-lid", model_name))
model.predict("Debatt er bra og sunt for demokratier, og en forutsetning for politikkutvikling.", threshold=0.25)
# (('__label__nob',), array([0.95482141]))
```
Alternatively, these models are also integrated into the the experimental `nbailab` CLI application:
```bash
$ echo "Jeg leser en bok" | nbailab langid --model-name nb-nordic-lid.ftz
nob,0.9999788999557495
```
## Languages
### `nb-nordic-lid.bin`
Trained on sentences from the [GiellaT's Translation Memories](https://giellalt.github.io/tm/TranslationMemories.html) and [Wortschatz's corpora](https://wortschatz.uni-leipzig.de/en/download).
| ISO-639-3 | Language | Precision | Recall | F1-Score | Support |
|:-------------|:------------------|------------:|---------:|-----------:|----------:|
| dan | Danish | 0.9720 | 0.9838 | 0.9779 | 494 |
| eng | English | 0.9980 | 0.9940 | 0.9960 | 502 |
| fao | Faroese | 0.9920 | 0.9940 | 0.9930 | 499 |
| fin | Finnish | 1.0000 | 1.0000 | 1.0000 | 500 |
| isl | Icelandic | 0.9900 | 0.9920 | 0.9910 | 499 |
| nno | Norwegian Nynorsk | 0.9920 | 0.9861 | 0.9890 | 503 |
| nob | Norwegian Bokmål | 0.9840 | 0.9743 | 0.9791 | 505 |
| sma | Southern Sami | 0.9800 | 0.9703 | 0.9751 | 101 |
| sme | Northern Sami | 1.0000 | 0.9921 | 0.9960 | 504 |
| smj | Lule Sami | 0.9920 | 0.9960 | 0.9940 | 498 |
| smn | Inari Sami | 0.9950 | 1.0000 | 0.9975 | 199 |
| sms | Skolt Sami | 0.9900 | 0.9950 | 0.9925 | 199 |
| swe | Swedish | 0.9860 | 0.9920 | 0.9890 | 497 |
| Accuracy | | | | 0.9905 | 5500 |
| Weighted avg | | 0.9906 | 0.9905 | 0.9905 | 5500 |
| Macro avg | | 0.9901 | 0.9900 | 0.9900 | 5500 |
### `nb-nordic-lid.159.bin`
<details>
<summary>Scores for the 159 languages</summary>
Additionally trained on sentences from [Taoteba](https://tatoeba.org/en/).
| ISO-639-3 | Language | Precision | Recall | F1-Score | Support |
|:-------------|:----------------------------|------------:|---------:|-----------:|----------:|
| afr | Afrikaans | 0.9634 | 0.9485 | 0.9558 | 194 |
| ara | Arabic | 0.9771 | 0.9533 | 0.9650 | 492 |
| arq | Algerian Arabic | 0.9478 | 0.9316 | 0.9397 | 117 |
| arz | Egyptian Arabic | 0.7193 | 0.8542 | 0.7810 | 48 |
| asm | Assamese | 0.9828 | 0.9884 | 0.9856 | 173 |
| avk | Kotava | 0.9895 | 0.9844 | 0.9869 | 192 |
| aze | Azerbaijani | 0.9707 | 0.9831 | 0.9768 | 236 |
| bel | Belarusian | 0.9864 | 0.9785 | 0.9825 | 372 |
| ben | Bengali | 0.9915 | 0.9873 | 0.9894 | 236 |
| ber | Berber | 0.8991 | 0.8507 | 0.8742 | 576 |
| bos | Bosnian | 0.1548 | 0.1781 | 0.1656 | 73 |
| bre | Breton | 0.9613 | 0.9681 | 0.9647 | 282 |
| bua | Buryat | 0.9333 | 0.9130 | 0.9231 | 46 |
| bul | Bulgarian | 0.9530 | 0.9660 | 0.9595 | 441 |
| cat | Catalan | 0.9604 | 0.9510 | 0.9557 | 306 |
| cbk | Chavacano | 0.9627 | 0.9923 | 0.9773 | 130 |
| ceb | Cebuano | 0.8974 | 0.9091 | 0.9032 | 77 |
| ces | Czech | 0.9684 | 0.9665 | 0.9675 | 508 |
| chv | Chuvash | 0.9878 | 0.9643 | 0.9759 | 84 |
| ckb | Central Kurdish (Soranî) | 0.9751 | 0.9944 | 0.9846 | 354 |
| ckt | Chukchi | 0.9615 | 1.0000 | 0.9804 | 25 |
| cmn | Mandarin Chinese | 0.9726 | 0.8674 | 0.9170 | 573 |
| cor | Cornish | 1.0000 | 0.9733 | 0.9864 | 187 |
| csb | Kashubian | 0.9787 | 1.0000 | 0.9892 | 46 |
| cym | Welsh | 0.9625 | 0.9625 | 0.9625 | 80 |
| dan | Danish | 0.9401 | 0.9345 | 0.9373 | 1007 |
| deu | German | 0.9908 | 0.9765 | 0.9836 | 553 |
| dsb | Lower Sorbian | 0.8704 | 0.8246 | 0.8468 | 57 |
| dtp | Central Dusun | 0.9161 | 0.9562 | 0.9357 | 137 |
| ell | Greek | 1.0000 | 0.9979 | 0.9989 | 476 |
| eng | English | 0.9914 | 0.9886 | 0.9900 | 1052 |
| epo | Esperanto | 0.9817 | 0.9853 | 0.9835 | 544 |
| est | Estonian | 0.9659 | 0.9770 | 0.9714 | 174 |
| eus | Basque | 0.9883 | 0.9585 | 0.9732 | 265 |
| fao | Faroese | 0.9840 | 0.9899 | 0.9870 | 497 |
| fin | Finnish | 0.9932 | 0.9817 | 0.9874 | 1041 |
| fkv | Kven Finnish | 0.5769 | 0.7500 | 0.6522 | 20 |
| fra | French | 0.9890 | 0.9890 | 0.9890 | 544 |
| frr | North Frisian | 0.9784 | 0.9784 | 0.9784 | 139 |
| fry | Frisian | 0.7419 | 0.9200 | 0.8214 | 25 |
| gcf | Guadeloupean Creole French | 0.9810 | 0.9904 | 0.9856 | 104 |
| gla | Scottish Gaelic | 0.9608 | 0.9800 | 0.9703 | 50 |
| gle | Irish | 0.9781 | 0.9853 | 0.9817 | 136 |
| glg | Galician | 0.9198 | 0.9330 | 0.9264 | 209 |
| gos | Gronings | 0.9631 | 0.9671 | 0.9651 | 243 |
| grc | Ancient Greek | 0.9828 | 1.0000 | 0.9913 | 57 |
| grn | Guarani | 0.9810 | 0.9936 | 0.9873 | 156 |
| guc | Wayuu | 0.9556 | 1.0000 | 0.9773 | 43 |
| hau | Hausa | 0.9930 | 0.9930 | 0.9930 | 431 |
| heb | Hebrew | 1.0000 | 1.0000 | 1.0000 | 536 |
| hin | Hindi | 1.0000 | 0.9974 | 0.9987 | 391 |
| hoc | Ho | 0.9143 | 1.0000 | 0.9552 | 32 |
| hrv | Croatian | 0.6085 | 0.5652 | 0.5861 | 253 |
| hrx | Hunsrik | 0.8727 | 0.9231 | 0.8972 | 52 |
| hsb | Upper Sorbian | 0.8533 | 0.8312 | 0.8421 | 77 |
| hun | Hungarian | 0.9853 | 0.9889 | 0.9871 | 541 |
| hye | Armenian | 1.0000 | 1.0000 | 1.0000 | 225 |
| ido | Ido | 0.9731 | 0.9560 | 0.9645 | 341 |
| ile | Interlingue | 0.9386 | 0.9450 | 0.9418 | 291 |
| ilo | Ilocano | 0.9917 | 0.9677 | 0.9796 | 124 |
| ina | Interlingua | 0.9602 | 0.9775 | 0.9688 | 444 |
| ind | Indonesian | 0.8550 | 0.8305 | 0.8426 | 419 |
| isl | Icelandic | 0.9874 | 0.9931 | 0.9902 | 869 |
| ita | Italian | 0.9835 | 0.9746 | 0.9791 | 552 |
| jav | Javanese | 0.9400 | 0.9792 | 0.9592 | 48 |
| jbo | Lojban | 1.0000 | 1.0000 | 1.0000 | 402 |
| jpn | Japanese | 0.9870 | 1.0000 | 0.9935 | 531 |
| kab | Kabyle | 0.8382 | 0.9012 | 0.8686 | 506 |
| kat | Georgian | 1.0000 | 0.9885 | 0.9942 | 260 |
| kaz | Kazakh | 0.9896 | 0.9896 | 0.9896 | 192 |
| kha | Khasi | 0.9038 | 0.9400 | 0.9216 | 100 |
| khm | Khmer | 1.0000 | 1.0000 | 1.0000 | 75 |
| kmr | Northern Kurdish (Kurmancî) | 0.9881 | 0.9793 | 0.9837 | 338 |
| knc | Central Kanuri | 0.9775 | 1.0000 | 0.9886 | 174 |
| kor | Korean | 1.0000 | 0.9806 | 0.9902 | 360 |
| kzj | Coastal Kadazan | 0.9744 | 0.9580 | 0.9661 | 238 |
| lad | Ladino | 0.8154 | 0.8281 | 0.8217 | 64 |
| lat | Latin | 0.9756 | 0.9677 | 0.9717 | 496 |
| lfn | Lingua Franca Nova | 0.9745 | 0.9768 | 0.9757 | 431 |
| lij | Ligurian | 0.9556 | 0.9556 | 0.9556 | 90 |
| lin | Lingala | 0.9859 | 0.9859 | 0.9859 | 213 |
| lit | Lithuanian | 0.9903 | 0.9942 | 0.9922 | 513 |
| ltz | Luxembourgish | 0.9773 | 0.9149 | 0.9451 | 47 |
| lvs | Latvian | 0.9732 | 0.9797 | 0.9764 | 148 |
| lzh | Literary Chinese | 0.7473 | 0.9444 | 0.8344 | 72 |
| mal | Malayalam | 1.0000 | 1.0000 | 1.0000 | 44 |
| mar | Marathi | 0.9961 | 1.0000 | 0.9980 | 509 |
| mhr | Meadow Mari | 0.9899 | 0.9801 | 0.9850 | 201 |
| mkd | Macedonian | 0.9630 | 0.9447 | 0.9538 | 524 |
| mon | Mongolian | 0.9781 | 0.9710 | 0.9745 | 138 |
| mus | Muskogee (Creek) | 0.9333 | 0.9655 | 0.9492 | 29 |
| mya | Burmese | 1.0000 | 1.0000 | 1.0000 | 27 |
| nds | Low German (Low Saxon) | 0.9829 | 0.9805 | 0.9817 | 410 |
| nld | Dutch | 0.9681 | 0.9810 | 0.9745 | 526 |
| nnb | Nande | 0.9896 | 0.9845 | 0.9870 | 387 |
| nno | Norwegian Nynorsk | 0.9551 | 0.9685 | 0.9617 | 571 |
| nob | Norwegian Bokmål | 0.9280 | 0.9168 | 0.9224 | 914 |
| nst | Naga (Tangshang) | 1.0000 | 1.0000 | 1.0000 | 39 |
| nus | Nuer | 0.9903 | 1.0000 | 0.9951 | 102 |
| oci | Occitan | 0.9795 | 0.9598 | 0.9696 | 249 |
| orv | Old East Slavic | 0.9846 | 1.0000 | 0.9922 | 64 |
| oss | Ossetian | 0.9891 | 0.9963 | 0.9927 | 272 |
| ota | Ottoman Turkish | 0.9469 | 0.9727 | 0.9596 | 110 |
| pam | Kapampangan | 0.9865 | 0.9733 | 0.9799 | 75 |
| pcd | Picard | 0.9552 | 0.9697 | 0.9624 | 66 |
| pes | Persian | 0.9934 | 0.9956 | 0.9945 | 454 |
| pms | Piedmontese | 0.9268 | 0.9744 | 0.9500 | 39 |
| pol | Polish | 0.9886 | 0.9886 | 0.9886 | 525 |
| por | Portuguese | 0.9669 | 0.9686 | 0.9677 | 542 |
| prg | Old Prussian | 0.9800 | 0.9608 | 0.9703 | 51 |
| rhg | Rohingya | 0.9890 | 1.0000 | 0.9945 | 180 |
| rom | Romani | 0.9535 | 0.8913 | 0.9213 | 46 |
| ron | Romanian | 0.9870 | 0.9785 | 0.9827 | 465 |
| run | Kirundi | 0.9871 | 0.9746 | 0.9808 | 236 |
| rus | Russian | 0.9671 | 0.9796 | 0.9733 | 540 |
| sah | Yakut | 1.0000 | 1.0000 | 1.0000 | 48 |
| sat | Santali | 1.0000 | 1.0000 | 1.0000 | 171 |
| sdh | Southern Kurdish | 0.9808 | 0.9107 | 0.9444 | 56 |
| shi | Tashelhit | 0.9779 | 0.9172 | 0.9466 | 145 |
| slk | Slovak | 0.9235 | 0.9421 | 0.9327 | 397 |
| slv | Slovenian | 0.7544 | 0.8958 | 0.8190 | 48 |
| sma | Southern Sami | 0.9600 | 0.9600 | 0.9600 | 100 |
| sme | Northern Sami | 1.0000 | 0.9901 | 0.9950 | 505 |
| smj | Lule Sami | 0.9860 | 1.0000 | 0.9930 | 493 |
| smn | Inari Sami | 0.9950 | 0.9950 | 0.9950 | 200 |
| sms | Skolt Sami | 0.9850 | 0.9899 | 0.9875 | 199 |
| spa | Spanish | 0.9779 | 0.9619 | 0.9698 | 551 |
| sqi | Albanian | 0.9683 | 0.9839 | 0.9760 | 124 |
| srp | Serbian | 0.8347 | 0.8313 | 0.8330 | 492 |
| swc | Congo Swahili | 0.8750 | 0.8594 | 0.8671 | 448 |
| swe | Swedish | 0.9809 | 0.9839 | 0.9824 | 991 |
| swg | Swabian | 0.9898 | 0.9604 | 0.9749 | 101 |
| swh | Swahili | 0.6946 | 0.7382 | 0.7157 | 191 |
| tat | Tatar | 0.9817 | 0.9843 | 0.9830 | 382 |
| tgl | Tagalog | 0.9830 | 0.9830 | 0.9830 | 412 |
| tha | Thai | 1.0000 | 1.0000 | 1.0000 | 220 |
| thv | Tahaggart Tamahaq | 0.7241 | 0.8400 | 0.7778 | 25 |
| tig | Tigre | 1.0000 | 1.0000 | 1.0000 | 181 |
| tlh | Klingon | 1.0000 | 1.0000 | 1.0000 | 439 |
| tok | Toki Pona | 1.0000 | 1.0000 | 1.0000 | 495 |
| tpw | Old Tupi | 0.8929 | 0.9615 | 0.9259 | 26 |
| tuk | Turkmen | 0.9890 | 0.9711 | 0.9800 | 277 |
| tur | Turkish | 0.9872 | 0.9659 | 0.9764 | 558 |
| uig | Uyghur | 0.9966 | 0.9933 | 0.9950 | 299 |
| ukr | Ukrainian | 0.9813 | 0.9850 | 0.9831 | 532 |
| urd | Urdu | 1.0000 | 0.9914 | 0.9957 | 116 |
| uzb | Uzbek | 0.8200 | 0.9762 | 0.8913 | 42 |
| vie | Vietnamese | 0.9977 | 0.9977 | 0.9977 | 426 |
| vol | Volapük | 0.9862 | 0.9908 | 0.9885 | 217 |
| war | Waray | 0.9505 | 0.9796 | 0.9648 | 98 |
| wuu | Shanghainese | 0.8364 | 0.9275 | 0.8796 | 193 |
| xal | Kalmyk | 0.9302 | 0.9756 | 0.9524 | 41 |
| xmf | Mingrelian | 0.7419 | 0.8519 | 0.7931 | 27 |
| yid | Yiddish | 0.9971 | 1.0000 | 0.9986 | 348 |
| yue | Cantonese | 0.9195 | 0.9877 | 0.9524 | 243 |
| zgh | Standard Moroccan Tamazight | 0.9873 | 0.9873 | 0.9873 | 158 |
| zlm | Malay (Vernacular) | 0.8605 | 0.9024 | 0.8810 | 82 |
| zsm | Malay | 0.7782 | 0.7921 | 0.7851 | 279 |
| zza | Zaza | 0.9294 | 0.9294 | 0.9294 | 85 |
| Accuracy | | | | 0.9620 | 44049 |
| Weighted avg | | 0.9627 | 0.9620 | 0.9621 | 44049 |
| Macro avg | | 0.9434 | 0.9528 | 0.9476 | 44049 |
</details>
### `nb-nordic-lid.ftz`
The small models are quantized versions of the large versions using a cutoff of 50,000 words and ngrams and quantizing the norm separately.
| ISO-639-3 | Language | Precision | Recall | F1-Score | Support |
|:-------------|:------------------|------------:|---------:|-----------:|----------:|
| dan | Danish | 0.9700 | 0.9838 | 0.9768 | 493 |
| eng | English | 0.9980 | 0.9940 | 0.9960 | 502 |
| fao | Faroese | 0.9920 | 0.9920 | 0.9920 | 500 |
| fin | Finnish | 1.0000 | 1.0000 | 1.0000 | 500 |
| isl | Icelandic | 0.9880 | 0.9920 | 0.9900 | 498 |
| nno | Norwegian Nynorsk | 0.9880 | 0.9841 | 0.9860 | 502 |
| nob | Norwegian Bokmål | 0.9860 | 0.9705 | 0.9782 | 508 |
| sma | Southern Sami | 0.9800 | 0.9703 | 0.9751 | 101 |
| sme | Northern Sami | 1.0000 | 0.9921 | 0.9960 | 504 |
| smj | Lule Sami | 0.9920 | 0.9940 | 0.9930 | 499 |
| smn | Inari Sami | 0.9950 | 1.0000 | 0.9975 | 199 |
| sms | Skolt Sami | 0.9850 | 0.9949 | 0.9899 | 198 |
| swe | Swedish | 0.9820 | 0.9899 | 0.9859 | 496 |
| Accuracy | | | | 0.9895 | 5500 |
| Weighted avg | | 0.9895 | 0.9895 | 0.9895 | 5500 |
| Macro avg | | 0.9889 | 0.9890 | 0.9890 | 5500 |
### `nb-nordic-lid.159.ftz`
<details>
<summary>Scores for the 159 languages (compressed model)</summary>
| ISO-639-3 | Language | Precision | Recall | F1-Score | Support |
|:-------------|:----------------------------|------------:|---------:|-----------:|----------:|
| afr | Afrikaans | 0.9529 | 0.9333 | 0.9430 | 195 |
| ara | Arabic | 0.9708 | 0.9191 | 0.9443 | 507 |
| arq | Algerian Arabic | 0.8783 | 0.8783 | 0.8783 | 115 |
| arz | Egyptian Arabic | 0.5439 | 0.8378 | 0.6596 | 37 |
| asm | Assamese | 0.9828 | 0.9448 | 0.9634 | 181 |
| avk | Kotava | 0.9843 | 0.9792 | 0.9817 | 192 |
| aze | Azerbaijani | 0.9582 | 0.9828 | 0.9703 | 233 |
| bel | Belarusian | 0.9919 | 0.9683 | 0.9799 | 378 |
| ben | Bengali | 0.9574 | 0.9868 | 0.9719 | 228 |
| ber | Berber | 0.8495 | 0.7928 | 0.8202 | 584 |
| bos | Bosnian | 0.1429 | 0.2264 | 0.1752 | 53 |
| bre | Breton | 0.9507 | 0.9712 | 0.9609 | 278 |
| bua | Buryat | 0.9333 | 0.9333 | 0.9333 | 45 |
| bul | Bulgarian | 0.9351 | 0.9457 | 0.9404 | 442 |
| cat | Catalan | 0.9406 | 0.9406 | 0.9406 | 303 |
| cbk | Chavacano | 0.9552 | 0.9624 | 0.9588 | 133 |
| ceb | Cebuano | 0.8718 | 0.8500 | 0.8608 | 80 |
| ces | Czech | 0.9586 | 0.9548 | 0.9567 | 509 |
| chv | Chuvash | 1.0000 | 0.9647 | 0.9820 | 85 |
| ckb | Central Kurdish (Soranî) | 0.9640 | 0.9748 | 0.9694 | 357 |
| ckt | Chukchi | 0.9615 | 1.0000 | 0.9804 | 25 |
| cmn | Mandarin Chinese | 0.9667 | 0.8165 | 0.8853 | 605 |
| cor | Cornish | 0.9780 | 0.9674 | 0.9727 | 184 |
| csb | Kashubian | 0.9574 | 1.0000 | 0.9783 | 45 |
| cym | Welsh | 0.9625 | 0.9506 | 0.9565 | 81 |
| dan | Danish | 0.9281 | 0.9355 | 0.9318 | 993 |
| deu | German | 0.9853 | 0.9781 | 0.9817 | 549 |
| dsb | Lower Sorbian | 0.8889 | 0.8276 | 0.8571 | 58 |
| dtp | Central Dusun | 0.8741 | 0.9470 | 0.9091 | 132 |
| ell | Greek | 0.9958 | 0.9937 | 0.9947 | 476 |
| eng | English | 0.9886 | 0.9876 | 0.9881 | 1050 |
| epo | Esperanto | 0.9853 | 0.9818 | 0.9835 | 548 |
| est | Estonian | 0.9489 | 0.9766 | 0.9625 | 171 |
| eus | Basque | 0.9844 | 0.9583 | 0.9712 | 264 |
| fao | Faroese | 0.9780 | 0.9819 | 0.9800 | 498 |
| fin | Finnish | 0.9922 | 0.9724 | 0.9822 | 1050 |
| fkv | Kven Finnish | 0.5385 | 0.7368 | 0.6222 | 19 |
| fra | French | 0.9871 | 0.9728 | 0.9799 | 552 |
| frr | North Frisian | 0.9640 | 0.9640 | 0.9640 | 139 |
| fry | Frisian | 0.7097 | 0.8462 | 0.7719 | 26 |
| gcf | Guadeloupean Creole French | 0.9714 | 0.9808 | 0.9761 | 104 |
| gla | Scottish Gaelic | 0.9608 | 0.9608 | 0.9608 | 51 |
| gle | Irish | 0.9489 | 0.9924 | 0.9701 | 131 |
| glg | Galician | 0.8868 | 0.9082 | 0.8974 | 207 |
| gos | Gronings | 0.9426 | 0.9544 | 0.9485 | 241 |
| grc | Ancient Greek | 0.9483 | 0.9483 | 0.9483 | 58 |
| grn | Guarani | 0.9684 | 0.9935 | 0.9808 | 154 |
| guc | Wayuu | 0.9333 | 1.0000 | 0.9655 | 42 |
| hau | Hausa | 0.9861 | 0.9884 | 0.9872 | 430 |
| heb | Hebrew | 0.9981 | 0.9907 | 0.9944 | 540 |
| hin | Hindi | 0.9974 | 0.9898 | 0.9936 | 393 |
| hoc | Ho | 0.8571 | 1.0000 | 0.9231 | 30 |
| hrv | Croatian | 0.6766 | 0.5911 | 0.6310 | 269 |
| hrx | Hunsrik | 0.8545 | 0.9216 | 0.8868 | 51 |
| hsb | Upper Sorbian | 0.8400 | 0.8182 | 0.8289 | 77 |
| hun | Hungarian | 0.9816 | 0.9852 | 0.9834 | 541 |
| hye | Armenian | 1.0000 | 1.0000 | 1.0000 | 225 |
| ido | Ido | 0.9672 | 0.9501 | 0.9586 | 341 |
| ile | Interlingue | 0.9352 | 0.9547 | 0.9448 | 287 |
| ilo | Ilocano | 0.9917 | 0.9600 | 0.9756 | 125 |
| ina | Interlingua | 0.9580 | 0.9558 | 0.9569 | 453 |
| ind | Indonesian | 0.8231 | 0.8034 | 0.8131 | 417 |
| isl | Icelandic | 0.9805 | 0.9885 | 0.9845 | 867 |
| ita | Italian | 0.9817 | 0.9555 | 0.9684 | 562 |
| jav | Javanese | 0.9400 | 0.9792 | 0.9592 | 48 |
| jbo | Lojban | 1.0000 | 0.9975 | 0.9988 | 403 |
| jpn | Japanese | 0.9684 | 0.9981 | 0.9830 | 522 |
| kab | Kabyle | 0.7702 | 0.8516 | 0.8089 | 492 |
| kat | Georgian | 1.0000 | 0.9847 | 0.9923 | 261 |
| kaz | Kazakh | 0.9792 | 0.9843 | 0.9817 | 191 |
| kha | Khasi | 0.8942 | 0.9300 | 0.9118 | 100 |
| khm | Khmer | 1.0000 | 0.9868 | 0.9934 | 76 |
| kmr | Northern Kurdish (Kurmancî) | 0.9791 | 0.9647 | 0.9719 | 340 |
| knc | Central Kanuri | 0.9775 | 0.9943 | 0.9858 | 175 |
| kor | Korean | 0.9972 | 0.9778 | 0.9874 | 360 |
| kzj | Coastal Kadazan | 0.9658 | 0.9378 | 0.9516 | 241 |
| lad | Ladino | 0.7538 | 0.8033 | 0.7778 | 61 |
| lat | Latin | 0.9614 | 0.9594 | 0.9604 | 493 |
| lfn | Lingua Franca Nova | 0.9722 | 0.9611 | 0.9666 | 437 |
| lij | Ligurian | 0.8778 | 0.9753 | 0.9240 | 81 |
| lin | Lingala | 0.9859 | 0.9677 | 0.9767 | 217 |
| lit | Lithuanian | 0.9864 | 0.9864 | 0.9864 | 515 |
| ltz | Luxembourgish | 0.9773 | 0.9149 | 0.9451 | 47 |
| lvs | Latvian | 0.9597 | 0.9662 | 0.9630 | 148 |
| lzh | Literary Chinese | 0.6593 | 0.8108 | 0.7273 | 74 |
| mal | Malayalam | 1.0000 | 1.0000 | 1.0000 | 44 |
| mar | Marathi | 0.9902 | 0.9980 | 0.9941 | 507 |
| mhr | Meadow Mari | 0.9899 | 0.9752 | 0.9825 | 202 |
| mkd | Macedonian | 0.9397 | 0.9253 | 0.9324 | 522 |
| mon | Mongolian | 0.9781 | 0.9571 | 0.9675 | 140 |
| mus | Muskogee (Creek) | 0.9000 | 0.9643 | 0.9310 | 28 |
| mya | Burmese | 1.0000 | 1.0000 | 1.0000 | 27 |
| nds | Low German (Low Saxon) | 0.9829 | 0.9687 | 0.9757 | 415 |
| nld | Dutch | 0.9644 | 0.9735 | 0.9689 | 528 |
| nnb | Nande | 0.9870 | 0.9896 | 0.9883 | 384 |
| nno | Norwegian Nynorsk | 0.9499 | 0.9632 | 0.9565 | 571 |
| nob | Norwegian Bokmål | 0.9324 | 0.9073 | 0.9197 | 928 |
| nst | Naga (Tangshang) | 1.0000 | 0.9750 | 0.9873 | 40 |
| nus | Nuer | 0.9903 | 1.0000 | 0.9951 | 102 |
| oci | Occitan | 0.9631 | 0.9476 | 0.9553 | 248 |
| orv | Old East Slavic | 0.9538 | 0.9254 | 0.9394 | 67 |
| oss | Ossetian | 0.9818 | 0.9926 | 0.9872 | 271 |
| ota | Ottoman Turkish | 0.9204 | 0.9455 | 0.9327 | 110 |
| pam | Kapampangan | 0.9730 | 0.9600 | 0.9664 | 75 |
| pcd | Picard | 0.9254 | 0.9688 | 0.9466 | 64 |
| pes | Persian | 0.9846 | 0.9868 | 0.9857 | 454 |
| pms | Piedmontese | 0.9024 | 0.9487 | 0.9250 | 39 |
| pol | Polish | 0.9867 | 0.9885 | 0.9876 | 524 |
| por | Portuguese | 0.9595 | 0.9577 | 0.9586 | 544 |
| prg | Old Prussian | 0.9800 | 0.9423 | 0.9608 | 52 |
| rhg | Rohingya | 0.9835 | 0.9835 | 0.9835 | 182 |
| rom | Romani | 0.9302 | 0.8511 | 0.8889 | 47 |
| ron | Romanian | 0.9783 | 0.9762 | 0.9772 | 462 |
| run | Kirundi | 0.9871 | 0.9426 | 0.9644 | 244 |
| rus | Russian | 0.9561 | 0.9757 | 0.9658 | 536 |
| sah | Yakut | 0.9792 | 1.0000 | 0.9895 | 47 |
| sat | Santali | 0.9942 | 1.0000 | 0.9971 | 170 |
| sdh | Southern Kurdish | 0.8462 | 0.8627 | 0.8544 | 51 |
| shi | Tashelhit | 0.9706 | 0.8980 | 0.9329 | 147 |
| slk | Slovak | 0.9111 | 0.9318 | 0.9213 | 396 |
| slv | Slovenian | 0.7018 | 0.9302 | 0.8000 | 43 |
| sma | Southern Sami | 0.9500 | 0.9406 | 0.9453 | 101 |
| sme | Northern Sami | 1.0000 | 0.9843 | 0.9921 | 508 |
| smj | Lule Sami | 0.9840 | 0.9980 | 0.9909 | 493 |
| smn | Inari Sami | 0.9850 | 0.9949 | 0.9899 | 198 |
| sms | Skolt Sami | 0.9700 | 0.9848 | 0.9773 | 197 |
| spa | Spanish | 0.9613 | 0.9560 | 0.9586 | 545 |
| sqi | Albanian | 0.9603 | 0.9680 | 0.9641 | 125 |
| srp | Serbian | 0.8122 | 0.8106 | 0.8114 | 491 |
| swc | Congo Swahili | 0.8500 | 0.8367 | 0.8433 | 447 |
| swe | Swedish | 0.9759 | 0.9778 | 0.9768 | 992 |
| swg | Swabian | 0.9796 | 0.9320 | 0.9552 | 103 |
| swh | Swahili | 0.6650 | 0.7068 | 0.6853 | 191 |
| tat | Tatar | 0.9739 | 0.9816 | 0.9777 | 380 |
| tgl | Tagalog | 0.9709 | 0.9732 | 0.9721 | 411 |
| tha | Thai | 1.0000 | 1.0000 | 1.0000 | 220 |
| thv | Tahaggart Tamahaq | 0.6552 | 0.7600 | 0.7037 | 25 |
| tig | Tigre | 1.0000 | 1.0000 | 1.0000 | 181 |
| tlh | Klingon | 0.9977 | 0.9955 | 0.9966 | 440 |
| tok | Toki Pona | 1.0000 | 1.0000 | 1.0000 | 495 |
| tpw | Old Tupi | 0.8214 | 0.8846 | 0.8519 | 26 |
| tuk | Turkmen | 0.9779 | 0.9708 | 0.9744 | 274 |
| tur | Turkish | 0.9780 | 0.9604 | 0.9691 | 556 |
| uig | Uyghur | 0.9933 | 0.9900 | 0.9916 | 299 |
| ukr | Ukrainian | 0.9682 | 0.9700 | 0.9691 | 533 |
| urd | Urdu | 1.0000 | 0.9914 | 0.9957 | 116 |
| uzb | Uzbek | 0.8000 | 0.9756 | 0.8791 | 41 |
| vie | Vietnamese | 0.9977 | 0.9977 | 0.9977 | 426 |
| vol | Volapük | 0.9862 | 0.9817 | 0.9840 | 219 |
| war | Waray | 0.9208 | 0.9688 | 0.9442 | 96 |
| wuu | Shanghainese | 0.8037 | 0.9053 | 0.8515 | 190 |
| xal | Kalmyk | 0.9070 | 0.9512 | 0.9286 | 41 |
| xmf | Mingrelian | 0.6774 | 0.8400 | 0.7500 | 25 |
| yid | Yiddish | 0.9828 | 0.9942 | 0.9885 | 345 |
| yue | Cantonese | 0.8314 | 0.9688 | 0.8948 | 224 |
| zgh | Standard Moroccan Tamazight | 0.9873 | 0.9873 | 0.9873 | 158 |
| zlm | Malay (Vernacular) | 0.8488 | 0.8588 | 0.8538 | 85 |
| zsm | Malay | 0.7465 | 0.7544 | 0.7504 | 281 |
| zza | Zaza | 0.8824 | 0.9146 | 0.8982 | 82 |
| Accuracy | | | | 0.9513 | 44049 |
| Weighted avg | | 0.9529 | 0.9513 | 0.9518 | 44049 |
| Macro avg | | 0.9275 | 0.9399 | 0.9327 | 44049 |
</details>
## Citing & Authors
The model was trained by Javier de la Rosa. Data was prepared by Per Egil Kummervold and Javier de la Rosa. Documentation written by Javier de la Rosa. |