pere commited on
Commit
34e4d18
1 Parent(s): 738f2a5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -1
README.md CHANGED
@@ -1,3 +1,116 @@
1
  ---
2
- license: cc-by-sa-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-nc-sa-4.0
3
+ tags:
4
+ - automatic-speech-recognition
5
+ - NbAiLab/NPSC
6
+ - no
7
+ - nb
8
+ - nb-NO
9
+ datasets:
10
+ - NbAiLab/NPSC
11
+ language:
12
+ - nb-NO
13
+ model-index:
14
+ - name: nb-wav2vec2-300m-bokmaal
15
+ results:
16
+ - task:
17
+ name: Automatic Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: NPSC
21
+ type: NbAiLab/NPSC
22
+ args: 16K_mp3_bokmaal
23
+ metrics:
24
+ - name: Test (Bokmål) WER
25
+ type: wer
26
+ value: 0.0703
27
+ - name: Test (Bokmål) CER
28
+ type: cer
29
+ value: 0.0269
30
  ---
31
+
32
+ # Norwegian Wav2Vec2 Model - 300M - VoxRex - Bokmål
33
+ This model is finetuned on top of feature extractor [VoxRex-model](https://huggingface.co/KBLab/wav2vec2-large-voxrex) from the National Library of Sweeden. The finefinetuned model achieves the following results on the test set with a 5-gram KenLM. Numbers in parenthesis is without the language model:
34
+ - **WER: 0.0703** (0.0979)
35
+ - **CER: 0.0269** (0.0311)
36
+
37
+ ## Model description
38
+ This is one of several Wav2Vec-models created during the 🤗 hosted [Robust Speech Event](https://discuss.huggingface.co/t/open-to-the-community-robust-speech-recognition-challenge/13614?s=09). This is the complete list of models and their final scores:
39
+
40
+ | Model | Final WER | |
41
+ |:--------------|:------------|:------------:|
42
+ | [NbAiLab/nb-wav2vec2-1b-bokmaal](https://huggingface.co/NbAiLab/nb-wav2vec2-1b-bokmaal) | 6.33 | |
43
+ | [NbAiLab/nb-wav2vec2-300m-bokmaal](https://huggingface.co/NbAiLab/nb-wav2vec2-300m-bokmaal) | 7.03 | |
44
+ | NbAiLab/nb-wav2vec2-300m-nynorsk (this model) | 12.22 | |
45
+ ## Dataset
46
+ In parallell with the event, the team also converted the [Norwegian Parliamentary Speech Corpus (NPSC)](https://huggingface.co/datasets/NbAiLab/NPSC) to the 🤗 Dataset format and used that as the main source for training.
47
+
48
+ ## Code
49
+ We do release all code developed during the event so that the Norwegian NLP community can build upon this to develop even better Norwegian ASR models. The finetuning of these models are not very compute demanding. You should after following the instructions here, be able to train your own automatic speech recognition system in less than a day with an average GPU.
50
+
51
+ ## Team
52
+ The following people contributed to building this model: Rolv-Arild Braaten, Per Egil Kummervold, Andre Kåsen, Javier de la Rosa, Per Erik Solberg, and Freddy Wetjen.
53
+
54
+ ## Training procedure
55
+ To reproduce these results, we strongly recommend that you follow the [instructions from 🤗](https://github.com/huggingface/transformers/tree/master/examples/research_projects/robust-speech-event#talks) to train a simple Swedish model.
56
+
57
+ When you have verified that you are able to do this, create a fresh new repo. You can then start by copying the files ```run.sh``` and ```run_speech_recognition_ctc.py``` from our repo. Running this will create all the other necessary files, and should let you reproduce our results. With some tweaks to the hyperparameters, you might even be able to build an even better ASR. Good luck!
58
+
59
+ ### Language Model
60
+ As you see from the results above, adding even a simple 5-gram language will improve the results. 🤗 has provided another [very nice blog](https://huggingface.co/blog/wav2vec2-with-ngram) about how to add a 5-gram language model to improve the ASR model. You can build this from your own corpus, for instance by extracting some suitable text from the [Norwegian Colossal Corpus](https://huggingface.co/datasets/NbAiLab/NCC). You can also skip some of the steps in the guide, and copy the [5-gram model from this repo](https://huggingface.co/NbAiLab/XLSR-300M-bokmaal/tree/main/language_model).
61
+
62
+
63
+ ### Parameters
64
+ The final model was run using these parameters:
65
+ ```
66
+ --dataset_name="NbAiLab/NPSC"
67
+ --model_name_or_path="facebook/wav2vec2-xls-r-1b"
68
+ --dataset_config_name="16K_mp3_bokmaal"
69
+ --output_dir="./"
70
+ --overwrite_output_dir
71
+ --num_train_epochs="40"
72
+ --per_device_train_batch_size="12"
73
+ --per_device_eval_batch_size="12"
74
+ --gradient_accumulation_steps="2"
75
+ --learning_rate="2e-5"
76
+ --warmup_steps="2000"
77
+ --length_column_name="input_length"
78
+ --evaluation_strategy="steps"
79
+ --text_column_name="text"
80
+ --save_steps="500"
81
+ --eval_steps="500"
82
+ --logging_steps="100"
83
+ --layerdrop="0.041"
84
+ --attention_dropout="0.094"
85
+ --activation_dropout="0.055"
86
+ --hidden_dropout="0.047"
87
+ --save_total_limit="3"
88
+ --freeze_feature_encoder
89
+ --feat_proj_dropout="0.04"
90
+ --mask_time_prob="0.082"
91
+ --mask_time_length="10"
92
+ --mask_feature_prob="0.25"
93
+ --mask_feature_length="64"
94
+ --gradient_checkpointing
95
+ --min_duration_in_seconds="0.5"
96
+ --max_duration_in_seconds="30.0"
97
+ --ctc_zero_infinity=True
98
+ --use_auth_token
99
+ --seed="42"
100
+ --fp16
101
+ --group_by_length
102
+ --do_train --do_eval
103
+ --push_to_hub
104
+ --preprocessing_num_workers="16"
105
+ ```
106
+
107
+ Following this settings, the training might take 3-4 days on an average GPU. You should however get a decent model and faster results by tweaking these parameters
108
+
109
+ | Parameter| Comment |
110
+ |:-------------|:-----|
111
+ | per_device_train_batch_size | Adjust this to the maximum of available memory. 16 or 24 might be good settings depending on your system |
112
+ |gradient_accumulation_steps |Can be adjusted even further up to increase batch size and speed up training without running into memory issues |
113
+ | learning_rate|Can be increased, maybe as high as 1e-4. Speeds up training but might add instability |
114
+ | epochs| Can be decreased significantly. This is a huge dataset and you might get a decent result already after a couple of epochs|
115
+
116
+