File size: 2,630 Bytes
3f3ede3
736e2e1
 
3646dde
 
 
51b439d
3646dde
3f3ede3
 
3646dde
 
3f3ede3
3646dde
51b439d
3f3ede3
736e2e1
51b439d
736e2e1
3f3ede3
3646dde
3f3ede3
3646dde
3f3ede3
3646dde
3f3ede3
3646dde
3f3ede3
3646dde
3f3ede3
3646dde
3f3ede3
 
 
3646dde
 
 
 
51b439d
 
3646dde
 
 
736e2e1
 
51b439d
3646dde
 
51b439d
 
 
 
 
 
 
736e2e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51b439d
3f3ede3
 
 
3646dde
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
base_model: cyberagent/calm2-7b-chat
tags:
- generated_from_trainer
model-index:
- name: out
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
# out

This model is a fine-tuned version of [cyberagent/calm2-7b-chat](https://huggingface.co/cyberagent/calm2-7b-chat) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.2941

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- gradient_accumulation_steps: 2
- total_train_batch_size: 6
- total_eval_batch_size: 3
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 3.5899        | 0.0   | 1    | 4.1781          |
| 3.4689        | 0.05  | 352  | 3.5988          |
| 3.519         | 0.1   | 704  | 3.6209          |
| 3.4168        | 0.15  | 1056 | 3.6161          |
| 3.4906        | 0.2   | 1408 | 3.6054          |
| 3.4853        | 0.25  | 1760 | 3.5950          |
| 3.475         | 0.3   | 2112 | 3.5806          |
| 3.2476        | 0.35  | 2464 | 3.5675          |
| 3.2339        | 0.4   | 2816 | 3.5398          |
| 3.3711        | 0.45  | 3168 | 3.5233          |
| 3.4195        | 0.5   | 3520 | 3.5006          |
| 3.1105        | 0.55  | 3872 | 3.4804          |
| 3.2477        | 0.6   | 4224 | 3.4546          |
| 3.2753        | 0.65  | 4576 | 3.4311          |
| 3.1867        | 0.7   | 4928 | 3.4054          |
| 3.2009        | 0.75  | 5280 | 3.3783          |
| 3.1037        | 0.8   | 5632 | 3.3509          |
| 3.0394        | 0.85  | 5984 | 3.3314          |
| 3.0759        | 0.9   | 6336 | 3.3095          |
| 3.1989        | 0.95  | 6688 | 3.2941          |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1