NekoMikoReimu commited on
Commit
33ab592
1 Parent(s): 6dc6619

Delete checkpoint-7023

Browse files
checkpoint-7023/config.json DELETED
@@ -1,28 +0,0 @@
1
- {
2
- "_name_or_path": "cyberagent/calm2-7b-chat",
3
- "architectures": [
4
- "LlamaForCausalLM"
5
- ],
6
- "attention_bias": false,
7
- "bos_token_id": 0,
8
- "eos_token_id": 0,
9
- "hidden_act": "silu",
10
- "hidden_size": 4096,
11
- "initializer_range": 0.02,
12
- "intermediate_size": 11008,
13
- "max_position_embeddings": 32768,
14
- "model_type": "llama",
15
- "num_attention_heads": 32,
16
- "num_hidden_layers": 32,
17
- "num_key_value_heads": 32,
18
- "pad_token_id": 1,
19
- "pretraining_tp": 1,
20
- "rms_norm_eps": 1e-06,
21
- "rope_scaling": null,
22
- "rope_theta": 500000,
23
- "tie_word_embeddings": false,
24
- "torch_dtype": "bfloat16",
25
- "transformers_version": "4.34.1",
26
- "use_cache": false,
27
- "vocab_size": 65024
28
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-7023/generation_config.json DELETED
@@ -1,7 +0,0 @@
1
- {
2
- "_from_model_config": true,
3
- "bos_token_id": 0,
4
- "eos_token_id": 0,
5
- "pad_token_id": 1,
6
- "transformers_version": "4.34.1"
7
- }
 
 
 
 
 
 
 
 
checkpoint-7023/latest DELETED
@@ -1 +0,0 @@
1
- global_step7023
 
 
checkpoint-7023/pytorch_model-00001-of-00002.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:f5b98f04a3fb8a808b5aa704219ccfd3291621abd6be915d74f50d4196fe863d
3
- size 9976594142
 
 
 
 
checkpoint-7023/pytorch_model-00002-of-00002.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:2a8d0dc9dd398a7009e3683075aebf94673b76a22a2100d00841dd0fa3f7095c
3
- size 4041391035
 
 
 
 
checkpoint-7023/pytorch_model.bin.index.json DELETED
@@ -1,266 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 14017896448
4
- },
5
- "weight_map": {
6
- "lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
- "model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
- "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
- "model.layers.0.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
10
- "model.layers.0.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
11
- "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
12
- "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
13
- "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
14
- "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
15
- "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
16
- "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
17
- "model.layers.1.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
18
- "model.layers.1.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
19
- "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
20
- "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
21
- "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
22
- "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
23
- "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
24
- "model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
25
- "model.layers.10.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
26
- "model.layers.10.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
27
- "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
28
- "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
29
- "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
30
- "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
31
- "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
32
- "model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
- "model.layers.11.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
34
- "model.layers.11.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
35
- "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
36
- "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
37
- "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
38
- "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
39
- "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
40
- "model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
41
- "model.layers.12.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
42
- "model.layers.12.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
43
- "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
44
- "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
45
- "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
46
- "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
47
- "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
48
- "model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
- "model.layers.13.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
50
- "model.layers.13.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
51
- "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
52
- "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
53
- "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
54
- "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
55
- "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
56
- "model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
57
- "model.layers.14.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
58
- "model.layers.14.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
59
- "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
60
- "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
61
- "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
62
- "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
63
- "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
64
- "model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
65
- "model.layers.15.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
66
- "model.layers.15.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
67
- "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
68
- "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
69
- "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
70
- "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
71
- "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
72
- "model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
73
- "model.layers.16.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
74
- "model.layers.16.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
75
- "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
76
- "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
77
- "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
78
- "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
79
- "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
80
- "model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
81
- "model.layers.17.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
82
- "model.layers.17.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
83
- "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
84
- "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
85
- "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
86
- "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
87
- "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
88
- "model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
89
- "model.layers.18.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
90
- "model.layers.18.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
91
- "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
92
- "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
93
- "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
94
- "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
95
- "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
96
- "model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
97
- "model.layers.19.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
98
- "model.layers.19.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
99
- "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
100
- "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
101
- "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
102
- "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
103
- "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
104
- "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
105
- "model.layers.2.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
106
- "model.layers.2.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
107
- "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
108
- "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
109
- "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
110
- "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
111
- "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
112
- "model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
113
- "model.layers.20.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
114
- "model.layers.20.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
115
- "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
116
- "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
117
- "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
118
- "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
119
- "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
120
- "model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
121
- "model.layers.21.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
122
- "model.layers.21.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
123
- "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
124
- "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
125
- "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
126
- "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
127
- "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
128
- "model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
- "model.layers.22.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
130
- "model.layers.22.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
131
- "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
132
- "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
133
- "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
134
- "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
135
- "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
136
- "model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
137
- "model.layers.23.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
138
- "model.layers.23.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
139
- "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
140
- "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
141
- "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
142
- "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
143
- "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
144
- "model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
145
- "model.layers.24.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
146
- "model.layers.24.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
147
- "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
148
- "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
149
- "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
150
- "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
151
- "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
152
- "model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
153
- "model.layers.25.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
154
- "model.layers.25.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
155
- "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
156
- "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
157
- "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
158
- "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
159
- "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
160
- "model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
161
- "model.layers.26.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
162
- "model.layers.26.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
163
- "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
164
- "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
165
- "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
166
- "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
167
- "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
168
- "model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
169
- "model.layers.27.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
170
- "model.layers.27.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
171
- "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
172
- "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
173
- "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
174
- "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
175
- "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
176
- "model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
177
- "model.layers.28.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
178
- "model.layers.28.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
179
- "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
180
- "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
181
- "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
182
- "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
183
- "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
184
- "model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
185
- "model.layers.29.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
186
- "model.layers.29.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
187
- "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
188
- "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
189
- "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
190
- "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
191
- "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
192
- "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
193
- "model.layers.3.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
194
- "model.layers.3.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
195
- "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
196
- "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
197
- "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
198
- "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
199
- "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
200
- "model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
201
- "model.layers.30.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
202
- "model.layers.30.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
203
- "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
204
- "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
205
- "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
206
- "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
207
- "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
208
- "model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
- "model.layers.31.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
210
- "model.layers.31.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
211
- "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
212
- "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
213
- "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
214
- "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
215
- "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
216
- "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
217
- "model.layers.4.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
218
- "model.layers.4.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
219
- "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
220
- "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
221
- "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
222
- "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
223
- "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
224
- "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
225
- "model.layers.5.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
226
- "model.layers.5.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
227
- "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
228
- "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
229
- "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
230
- "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
231
- "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
232
- "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
233
- "model.layers.6.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
234
- "model.layers.6.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
235
- "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
236
- "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
237
- "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
238
- "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
239
- "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
240
- "model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
241
- "model.layers.7.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
242
- "model.layers.7.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
243
- "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
244
- "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
245
- "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
246
- "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
247
- "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
248
- "model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
249
- "model.layers.8.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
250
- "model.layers.8.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
251
- "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
252
- "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
253
- "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
254
- "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
255
- "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
256
- "model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
257
- "model.layers.9.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
258
- "model.layers.9.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
259
- "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
260
- "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
261
- "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
262
- "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
263
- "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
264
- "model.norm.weight": "pytorch_model-00002-of-00002.bin"
265
- }
266
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
checkpoint-7023/rng_state_0.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8b1653d5b0e09c2d93759ad31b0bca034b949c5beacbcec854b9c133c18ff0f1
3
- size 16631
 
 
 
 
checkpoint-7023/rng_state_1.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:718a356e2faee3d07e0416c137f3bcdc0c70d127268ae7202882018ffa03e320
3
- size 16631
 
 
 
 
checkpoint-7023/rng_state_2.pth DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:d5ab1200db9bd16e014659660734c61fe08517897cef6b3efe97c366790250f5
3
- size 16631
 
 
 
 
checkpoint-7023/trainer_state.json DELETED
The diff for this file is too large to render. See raw diff
 
checkpoint-7023/training_args.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:28dac321ffa4fc6b1816289fdd947bf7a05151e15fa1a3250a46751d33968167
3
- size 5947
 
 
 
 
checkpoint-7023/zero_to_fp32.py DELETED
@@ -1,587 +0,0 @@
1
- #!/usr/bin/env python
2
-
3
- # Copyright (c) Microsoft Corporation.
4
- # SPDX-License-Identifier: Apache-2.0
5
-
6
- # DeepSpeed Team
7
-
8
- # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
- # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
- # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
- # application.
12
- #
13
- # example: python zero_to_fp32.py . pytorch_model.bin
14
-
15
- import argparse
16
- import torch
17
- import glob
18
- import math
19
- import os
20
- import re
21
- from collections import OrderedDict
22
- from dataclasses import dataclass
23
-
24
- # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
- # DeepSpeed data structures it has to be available in the current python environment.
26
- from deepspeed.utils import logger
27
- from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
- FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
- FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
-
31
-
32
- @dataclass
33
- class zero_model_state:
34
- buffers: dict()
35
- param_shapes: dict()
36
- shared_params: list
37
- ds_version: int
38
- frozen_param_shapes: dict()
39
- frozen_param_fragments: dict()
40
-
41
-
42
- debug = 0
43
-
44
- # load to cpu
45
- device = torch.device('cpu')
46
-
47
-
48
- def atoi(text):
49
- return int(text) if text.isdigit() else text
50
-
51
-
52
- def natural_keys(text):
53
- '''
54
- alist.sort(key=natural_keys) sorts in human order
55
- http://nedbatchelder.com/blog/200712/human_sorting.html
56
- (See Toothy's implementation in the comments)
57
- '''
58
- return [atoi(c) for c in re.split(r'(\d+)', text)]
59
-
60
-
61
- def get_model_state_file(checkpoint_dir, zero_stage):
62
- if not os.path.isdir(checkpoint_dir):
63
- raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
-
65
- # there should be only one file
66
- if zero_stage <= 2:
67
- file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
- elif zero_stage == 3:
69
- file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
-
71
- if not os.path.exists(file):
72
- raise FileNotFoundError(f"can't find model states file at '{file}'")
73
-
74
- return file
75
-
76
-
77
- def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
- # XXX: need to test that this simple glob rule works for multi-node setup too
79
- ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
-
81
- if len(ckpt_files) == 0:
82
- raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
-
84
- return ckpt_files
85
-
86
-
87
- def get_optim_files(checkpoint_dir):
88
- return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
-
90
-
91
- def get_model_state_files(checkpoint_dir):
92
- return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
-
94
-
95
- def parse_model_states(files):
96
- zero_model_states = []
97
- for file in files:
98
- state_dict = torch.load(file, map_location=device)
99
-
100
- if BUFFER_NAMES not in state_dict:
101
- raise ValueError(f"{file} is not a model state checkpoint")
102
- buffer_names = state_dict[BUFFER_NAMES]
103
- if debug:
104
- print("Found buffers:", buffer_names)
105
-
106
- # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
- buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
- param_shapes = state_dict[PARAM_SHAPES]
109
-
110
- # collect parameters that are included in param_shapes
111
- param_names = []
112
- for s in param_shapes:
113
- for name in s.keys():
114
- param_names.append(name)
115
-
116
- # update with frozen parameters
117
- frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
- if frozen_param_shapes is not None:
119
- if debug:
120
- print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
- param_names += list(frozen_param_shapes.keys())
122
-
123
- # handle shared params
124
- shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
-
126
- ds_version = state_dict.get(DS_VERSION, None)
127
-
128
- frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
-
130
- z_model_state = zero_model_state(buffers=buffers,
131
- param_shapes=param_shapes,
132
- shared_params=shared_params,
133
- ds_version=ds_version,
134
- frozen_param_shapes=frozen_param_shapes,
135
- frozen_param_fragments=frozen_param_fragments)
136
- zero_model_states.append(z_model_state)
137
-
138
- return zero_model_states
139
-
140
-
141
- def parse_optim_states(files, ds_checkpoint_dir):
142
-
143
- total_files = len(files)
144
- state_dicts = []
145
- for f in files:
146
- state_dict = torch.load(f, map_location=device)
147
- # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
- # and also handle the case where it was already removed by another helper script
149
- state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
- state_dicts.append(state_dict)
151
-
152
- if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
- raise ValueError(f"{files[0]} is not a zero checkpoint")
154
- zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
- world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
-
157
- # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
- # parameters can be different from data parallelism for non-expert parameters. So we can just
159
- # use the max of the partition_count to get the dp world_size.
160
-
161
- if type(world_size) is list:
162
- world_size = max(world_size)
163
-
164
- if world_size != total_files:
165
- raise ValueError(
166
- f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
- "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
- )
169
-
170
- # the groups are named differently in each stage
171
- if zero_stage <= 2:
172
- fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
- elif zero_stage == 3:
174
- fp32_groups_key = FP32_FLAT_GROUPS
175
- else:
176
- raise ValueError(f"unknown zero stage {zero_stage}")
177
-
178
- if zero_stage <= 2:
179
- fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
- elif zero_stage == 3:
181
- # if there is more than one param group, there will be multiple flattened tensors - one
182
- # flattened tensor per group - for simplicity merge them into a single tensor
183
- #
184
- # XXX: could make the script more memory efficient for when there are multiple groups - it
185
- # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
-
187
- fp32_flat_groups = [
188
- torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
- ]
190
-
191
- return zero_stage, world_size, fp32_flat_groups
192
-
193
-
194
- def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
- """
196
- Returns fp32 state_dict reconstructed from ds checkpoint
197
-
198
- Args:
199
- - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
-
201
- """
202
- print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
-
204
- optim_files = get_optim_files(ds_checkpoint_dir)
205
- zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
- print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
-
208
- model_files = get_model_state_files(ds_checkpoint_dir)
209
-
210
- zero_model_states = parse_model_states(model_files)
211
- print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
-
213
- if zero_stage <= 2:
214
- return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
- elif zero_stage == 3:
216
- return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
-
218
-
219
- def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
- return
222
-
223
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
- frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
-
226
- if debug:
227
- num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
- print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
-
230
- wanted_params = len(frozen_param_shapes)
231
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
- avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
- print(f'Frozen params: Have {avail_numel} numels to process.')
234
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
-
236
- total_params = 0
237
- total_numel = 0
238
- for name, shape in frozen_param_shapes.items():
239
- total_params += 1
240
- unpartitioned_numel = shape.numel()
241
- total_numel += unpartitioned_numel
242
-
243
- state_dict[name] = frozen_param_fragments[name]
244
-
245
- if debug:
246
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
-
248
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
-
250
-
251
- def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
- param_shapes = zero_model_states[0].param_shapes
253
-
254
- # Reconstruction protocol:
255
- #
256
- # XXX: document this
257
-
258
- if debug:
259
- for i in range(world_size):
260
- for j in range(len(fp32_flat_groups[0])):
261
- print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
-
263
- # XXX: memory usage doubles here (zero2)
264
- num_param_groups = len(fp32_flat_groups[0])
265
- merged_single_partition_of_fp32_groups = []
266
- for i in range(num_param_groups):
267
- merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
- full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
- merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
- avail_numel = sum(
271
- [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
-
273
- if debug:
274
- wanted_params = sum([len(shapes) for shapes in param_shapes])
275
- wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
- # not asserting if there is a mismatch due to possible padding
277
- print(f"Have {avail_numel} numels to process.")
278
- print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
-
280
- # params
281
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
- # out-of-core computing solution
283
- total_numel = 0
284
- total_params = 0
285
- for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
- offset = 0
287
- avail_numel = full_single_fp32_vector.numel()
288
- for name, shape in shapes.items():
289
-
290
- unpartitioned_numel = shape.numel()
291
- total_numel += unpartitioned_numel
292
- total_params += 1
293
-
294
- if debug:
295
- print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
- state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
- offset += unpartitioned_numel
298
-
299
- # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
- # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
- # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
- # live optimizer object, so we are checking that the numbers are within the right range
303
- align_to = 2 * world_size
304
-
305
- def zero2_align(x):
306
- return align_to * math.ceil(x / align_to)
307
-
308
- if debug:
309
- print(f"original offset={offset}, avail_numel={avail_numel}")
310
-
311
- offset = zero2_align(offset)
312
- avail_numel = zero2_align(avail_numel)
313
-
314
- if debug:
315
- print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
-
317
- # Sanity check
318
- if offset != avail_numel:
319
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
-
321
- print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
-
323
-
324
- def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
- state_dict = OrderedDict()
326
-
327
- # buffers
328
- buffers = zero_model_states[0].buffers
329
- state_dict.update(buffers)
330
- if debug:
331
- print(f"added {len(buffers)} buffers")
332
-
333
- _zero2_merge_frozen_params(state_dict, zero_model_states)
334
-
335
- _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
-
337
- # recover shared parameters
338
- for pair in zero_model_states[0].shared_params:
339
- if pair[1] in state_dict:
340
- state_dict[pair[0]] = state_dict[pair[1]]
341
-
342
- return state_dict
343
-
344
-
345
- def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
- remainder = unpartitioned_numel % world_size
347
- padding_numel = (world_size - remainder) if remainder else 0
348
- partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
- return partitioned_numel, padding_numel
350
-
351
-
352
- def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
- if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
- return
355
-
356
- if debug:
357
- for i in range(world_size):
358
- num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
- print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
-
361
- frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
- wanted_params = len(frozen_param_shapes)
363
- wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
- avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
- print(f'Frozen params: Have {avail_numel} numels to process.')
366
- print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
-
368
- total_params = 0
369
- total_numel = 0
370
- for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
- total_params += 1
372
- unpartitioned_numel = shape.numel()
373
- total_numel += unpartitioned_numel
374
-
375
- param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
- state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
-
378
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
-
380
- if debug:
381
- print(
382
- f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
- )
384
-
385
- print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
-
387
-
388
- def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
- param_shapes = zero_model_states[0].param_shapes
390
- avail_numel = fp32_flat_groups[0].numel() * world_size
391
- # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
- # param, re-consolidating each param, while dealing with padding if any
393
-
394
- # merge list of dicts, preserving order
395
- param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
-
397
- if debug:
398
- for i in range(world_size):
399
- print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
-
401
- wanted_params = len(param_shapes)
402
- wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
- # not asserting if there is a mismatch due to possible padding
404
- avail_numel = fp32_flat_groups[0].numel() * world_size
405
- print(f"Trainable params: Have {avail_numel} numels to process.")
406
- print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
-
408
- # params
409
- # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
- # out-of-core computing solution
411
- offset = 0
412
- total_numel = 0
413
- total_params = 0
414
- for name, shape in param_shapes.items():
415
-
416
- unpartitioned_numel = shape.numel()
417
- total_numel += unpartitioned_numel
418
- total_params += 1
419
-
420
- partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
-
422
- if debug:
423
- print(
424
- f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
- )
426
-
427
- # XXX: memory usage doubles here
428
- state_dict[name] = torch.cat(
429
- tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
- 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
- offset += partitioned_numel
432
-
433
- offset *= world_size
434
-
435
- # Sanity check
436
- if offset != avail_numel:
437
- raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
-
439
- print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
-
441
-
442
- def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
- state_dict = OrderedDict()
444
-
445
- # buffers
446
- buffers = zero_model_states[0].buffers
447
- state_dict.update(buffers)
448
- if debug:
449
- print(f"added {len(buffers)} buffers")
450
-
451
- _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
-
453
- _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
-
455
- # recover shared parameters
456
- for pair in zero_model_states[0].shared_params:
457
- if pair[1] in state_dict:
458
- state_dict[pair[0]] = state_dict[pair[1]]
459
-
460
- return state_dict
461
-
462
-
463
- def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
- """
465
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
- ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
- via a model hub.
468
-
469
- Args:
470
- - ``checkpoint_dir``: path to the desired checkpoint folder
471
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
-
473
- Returns:
474
- - pytorch ``state_dict``
475
-
476
- Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
- you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
- the checkpoint.
479
-
480
- A typical usage might be ::
481
-
482
- from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
- # do the training and checkpoint saving
484
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
- model = model.cpu() # move to cpu
486
- model.load_state_dict(state_dict)
487
- # submit to model hub or save the model to share with others
488
-
489
- In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
- application. i.e. you will need to re-initialize the deepspeed engine, since
491
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
-
493
- If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
-
495
- """
496
- if tag is None:
497
- latest_path = os.path.join(checkpoint_dir, 'latest')
498
- if os.path.isfile(latest_path):
499
- with open(latest_path, 'r') as fd:
500
- tag = fd.read().strip()
501
- else:
502
- raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
-
504
- ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
-
506
- if not os.path.isdir(ds_checkpoint_dir):
507
- raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
-
509
- return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
-
511
-
512
- def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
- """
514
- Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
- loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
-
517
- Args:
518
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
- - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
- """
522
-
523
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
- print(f"Saving fp32 state dict to {output_file}")
525
- torch.save(state_dict, output_file)
526
-
527
-
528
- def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
- """
530
- 1. Put the provided model to cpu
531
- 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
- 3. Load it into the provided model
533
-
534
- Args:
535
- - ``model``: the model object to update
536
- - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
- - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
-
539
- Returns:
540
- - ``model`: modified model
541
-
542
- Make sure you have plenty of CPU memory available before you call this function. If you don't
543
- have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
- conveniently placed for you in the checkpoint folder.
545
-
546
- A typical usage might be ::
547
-
548
- from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
- model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
- # submit to model hub or save the model to share with others
551
-
552
- Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
- of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
- ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
-
556
- """
557
- logger.info(f"Extracting fp32 weights")
558
- state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
-
560
- logger.info(f"Overwriting model with fp32 weights")
561
- model = model.cpu()
562
- model.load_state_dict(state_dict, strict=False)
563
-
564
- return model
565
-
566
-
567
- if __name__ == "__main__":
568
-
569
- parser = argparse.ArgumentParser()
570
- parser.add_argument("checkpoint_dir",
571
- type=str,
572
- help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
- parser.add_argument(
574
- "output_file",
575
- type=str,
576
- help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
- parser.add_argument("-t",
578
- "--tag",
579
- type=str,
580
- default=None,
581
- help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
- parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
- args = parser.parse_args()
584
-
585
- debug = args.debug
586
-
587
- convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)