NekoMikoReimu
commited on
Commit
•
fcf26cd
1
Parent(s):
0438679
Delete checkpoint-618
Browse files- checkpoint-618/config.json +0 -28
- checkpoint-618/generation_config.json +0 -7
- checkpoint-618/global_step618/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -3
- checkpoint-618/global_step618/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -3
- checkpoint-618/global_step618/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +0 -3
- checkpoint-618/global_step618/mp_rank_00_model_states.pt +0 -3
- checkpoint-618/latest +0 -1
- checkpoint-618/pytorch_model-00001-of-00002.bin +0 -3
- checkpoint-618/pytorch_model-00002-of-00002.bin +0 -3
- checkpoint-618/pytorch_model.bin.index.json +0 -266
- checkpoint-618/rng_state_0.pth +0 -3
- checkpoint-618/rng_state_1.pth +0 -3
- checkpoint-618/rng_state_2.pth +0 -3
- checkpoint-618/trainer_state.json +0 -3887
- checkpoint-618/training_args.bin +0 -3
- checkpoint-618/zero_to_fp32.py +0 -587
checkpoint-618/config.json
DELETED
@@ -1,28 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_name_or_path": "cyberagent/calm2-7b-chat",
|
3 |
-
"architectures": [
|
4 |
-
"LlamaForCausalLM"
|
5 |
-
],
|
6 |
-
"attention_bias": false,
|
7 |
-
"bos_token_id": 0,
|
8 |
-
"eos_token_id": 0,
|
9 |
-
"hidden_act": "silu",
|
10 |
-
"hidden_size": 4096,
|
11 |
-
"initializer_range": 0.02,
|
12 |
-
"intermediate_size": 11008,
|
13 |
-
"max_position_embeddings": 32768,
|
14 |
-
"model_type": "llama",
|
15 |
-
"num_attention_heads": 32,
|
16 |
-
"num_hidden_layers": 32,
|
17 |
-
"num_key_value_heads": 32,
|
18 |
-
"pad_token_id": 1,
|
19 |
-
"pretraining_tp": 1,
|
20 |
-
"rms_norm_eps": 1e-06,
|
21 |
-
"rope_scaling": null,
|
22 |
-
"rope_theta": 500000,
|
23 |
-
"tie_word_embeddings": false,
|
24 |
-
"torch_dtype": "bfloat16",
|
25 |
-
"transformers_version": "4.34.1",
|
26 |
-
"use_cache": false,
|
27 |
-
"vocab_size": 65024
|
28 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-618/generation_config.json
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"_from_model_config": true,
|
3 |
-
"bos_token_id": 0,
|
4 |
-
"eos_token_id": 0,
|
5 |
-
"pad_token_id": 1,
|
6 |
-
"transformers_version": "4.34.1"
|
7 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-618/global_step618/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cfb4514c3718fcaf0b44817b8b6282dfd700e0d12b937ecbf66871de6ff19c09
|
3 |
-
size 28035802551
|
|
|
|
|
|
|
|
checkpoint-618/global_step618/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6b9290cc1480f6205a0c20b10d09202764a1fa808d4fdd800776a1625bee45ce
|
3 |
-
size 28035803191
|
|
|
|
|
|
|
|
checkpoint-618/global_step618/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f36ceff325ba6cd1535f1dfceccd0fd34a624bd63b1f33ee5278c713aee01c6f
|
3 |
-
size 28035802743
|
|
|
|
|
|
|
|
checkpoint-618/global_step618/mp_rank_00_model_states.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ae8e77bdb20476e11de017ea64f26b80360300bcbfa293b237730d077a5329e1
|
3 |
-
size 14017976195
|
|
|
|
|
|
|
|
checkpoint-618/latest
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
global_step618
|
|
|
|
checkpoint-618/pytorch_model-00001-of-00002.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:245595c67e8712c740f414577e89a49e851bc1110aef9b159f85ad73d7bf63c1
|
3 |
-
size 9976594142
|
|
|
|
|
|
|
|
checkpoint-618/pytorch_model-00002-of-00002.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9b965f08ffaf99a0f921d52572ee779b6be1f96afb3031cad865be6cbb5bfe6f
|
3 |
-
size 4041391035
|
|
|
|
|
|
|
|
checkpoint-618/pytorch_model.bin.index.json
DELETED
@@ -1,266 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"metadata": {
|
3 |
-
"total_size": 14017896448
|
4 |
-
},
|
5 |
-
"weight_map": {
|
6 |
-
"lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
-
"model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
-
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
-
"model.layers.0.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
-
"model.layers.0.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
-
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
-
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
-
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
-
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
-
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
-
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
17 |
-
"model.layers.1.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
-
"model.layers.1.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
-
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
-
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
-
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
-
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
-
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
-
"model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
-
"model.layers.10.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
-
"model.layers.10.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
27 |
-
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
-
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
-
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
-
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
-
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
-
"model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
-
"model.layers.11.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
-
"model.layers.11.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
-
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
-
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
37 |
-
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
-
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
-
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
-
"model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
-
"model.layers.12.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
-
"model.layers.12.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
-
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
-
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
-
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
-
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
47 |
-
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
-
"model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
-
"model.layers.13.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
-
"model.layers.13.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
-
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
-
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
-
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
-
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
-
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
-
"model.layers.14.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
57 |
-
"model.layers.14.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
-
"model.layers.14.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
-
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
-
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
-
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
-
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
-
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
-
"model.layers.15.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
-
"model.layers.15.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
-
"model.layers.15.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
67 |
-
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
-
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
69 |
-
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
70 |
-
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
71 |
-
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
72 |
-
"model.layers.16.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
73 |
-
"model.layers.16.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
-
"model.layers.16.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
75 |
-
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
-
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
77 |
-
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
-
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
79 |
-
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
80 |
-
"model.layers.17.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
81 |
-
"model.layers.17.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
82 |
-
"model.layers.17.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
83 |
-
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
84 |
-
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
85 |
-
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
86 |
-
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
87 |
-
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
88 |
-
"model.layers.18.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
89 |
-
"model.layers.18.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
90 |
-
"model.layers.18.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
91 |
-
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
92 |
-
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
93 |
-
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
94 |
-
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
95 |
-
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
96 |
-
"model.layers.19.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
97 |
-
"model.layers.19.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
98 |
-
"model.layers.19.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
99 |
-
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
100 |
-
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
101 |
-
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
102 |
-
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
103 |
-
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
104 |
-
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
105 |
-
"model.layers.2.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
106 |
-
"model.layers.2.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
107 |
-
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
108 |
-
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
109 |
-
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
110 |
-
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
111 |
-
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
112 |
-
"model.layers.20.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
113 |
-
"model.layers.20.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
114 |
-
"model.layers.20.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
115 |
-
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
116 |
-
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
117 |
-
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
118 |
-
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
119 |
-
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
120 |
-
"model.layers.21.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
121 |
-
"model.layers.21.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
122 |
-
"model.layers.21.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
123 |
-
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
124 |
-
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
125 |
-
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
126 |
-
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
127 |
-
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
128 |
-
"model.layers.22.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
-
"model.layers.22.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
-
"model.layers.22.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
-
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
-
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
-
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
-
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
-
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
-
"model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
137 |
-
"model.layers.23.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
|
138 |
-
"model.layers.23.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
|
139 |
-
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
140 |
-
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
141 |
-
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
142 |
-
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
143 |
-
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
144 |
-
"model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
-
"model.layers.24.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
|
146 |
-
"model.layers.24.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
|
147 |
-
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
148 |
-
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
149 |
-
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
150 |
-
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
151 |
-
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
152 |
-
"model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
-
"model.layers.25.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
-
"model.layers.25.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
-
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
-
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
157 |
-
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
-
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
-
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
-
"model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
-
"model.layers.26.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
-
"model.layers.26.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
-
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
164 |
-
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
165 |
-
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
166 |
-
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
167 |
-
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
168 |
-
"model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
169 |
-
"model.layers.27.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
|
170 |
-
"model.layers.27.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
|
171 |
-
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
172 |
-
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
173 |
-
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
174 |
-
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
175 |
-
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
176 |
-
"model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
177 |
-
"model.layers.28.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
|
178 |
-
"model.layers.28.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
-
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
-
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
-
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
-
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
-
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
-
"model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
-
"model.layers.29.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
-
"model.layers.29.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
|
187 |
-
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
-
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
-
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
-
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
-
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
-
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
193 |
-
"model.layers.3.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
194 |
-
"model.layers.3.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
195 |
-
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
196 |
-
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
197 |
-
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
198 |
-
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
199 |
-
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
200 |
-
"model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
-
"model.layers.30.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
-
"model.layers.30.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
-
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
-
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
-
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
-
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
207 |
-
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
-
"model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
-
"model.layers.31.mlp.swiglu.w12.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
-
"model.layers.31.mlp.swiglu.w3.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
-
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
-
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
-
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
-
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
-
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
216 |
-
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
217 |
-
"model.layers.4.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
218 |
-
"model.layers.4.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
219 |
-
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
220 |
-
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
221 |
-
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
222 |
-
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
223 |
-
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
224 |
-
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
225 |
-
"model.layers.5.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
226 |
-
"model.layers.5.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
227 |
-
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
228 |
-
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
229 |
-
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
230 |
-
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
231 |
-
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
232 |
-
"model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
233 |
-
"model.layers.6.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
234 |
-
"model.layers.6.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
235 |
-
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
236 |
-
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
237 |
-
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
238 |
-
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
239 |
-
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
240 |
-
"model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
241 |
-
"model.layers.7.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
-
"model.layers.7.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
-
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
-
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
-
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
-
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
247 |
-
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
-
"model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
249 |
-
"model.layers.8.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
250 |
-
"model.layers.8.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
251 |
-
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
252 |
-
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
253 |
-
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
254 |
-
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
255 |
-
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
256 |
-
"model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
257 |
-
"model.layers.9.mlp.swiglu.w12.weight": "pytorch_model-00001-of-00002.bin",
|
258 |
-
"model.layers.9.mlp.swiglu.w3.weight": "pytorch_model-00001-of-00002.bin",
|
259 |
-
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
260 |
-
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
261 |
-
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
262 |
-
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
263 |
-
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
264 |
-
"model.norm.weight": "pytorch_model-00002-of-00002.bin"
|
265 |
-
}
|
266 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-618/rng_state_0.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4f4f4eabd3d3209be5ecfa7748b59c9bcebe66f8280e04423295c3adb56fdda8
|
3 |
-
size 16631
|
|
|
|
|
|
|
|
checkpoint-618/rng_state_1.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0e5d459c15b3659d339b29f90d9c6d4fdbf6c828b592cb47110d9ed8c71e113f
|
3 |
-
size 16631
|
|
|
|
|
|
|
|
checkpoint-618/rng_state_2.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:7b4bd6bae9c008f0e9d18f4569f4dddb1adc43f27c07518ce3f88803299dc53b
|
3 |
-
size 16631
|
|
|
|
|
|
|
|
checkpoint-618/trainer_state.json
DELETED
@@ -1,3887 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"best_metric": null,
|
3 |
-
"best_model_checkpoint": null,
|
4 |
-
"epoch": 2.9611650485436893,
|
5 |
-
"eval_steps": 31,
|
6 |
-
"global_step": 618,
|
7 |
-
"is_hyper_param_search": false,
|
8 |
-
"is_local_process_zero": true,
|
9 |
-
"is_world_process_zero": true,
|
10 |
-
"log_history": [
|
11 |
-
{
|
12 |
-
"epoch": 0.0,
|
13 |
-
"learning_rate": 0.0,
|
14 |
-
"loss": 4.59,
|
15 |
-
"step": 1
|
16 |
-
},
|
17 |
-
{
|
18 |
-
"epoch": 0.0,
|
19 |
-
"eval_loss": 4.240383148193359,
|
20 |
-
"eval_runtime": 7.311,
|
21 |
-
"eval_samples_per_second": 164.273,
|
22 |
-
"eval_steps_per_second": 54.849,
|
23 |
-
"step": 1
|
24 |
-
},
|
25 |
-
{
|
26 |
-
"epoch": 0.01,
|
27 |
-
"learning_rate": 2.0000000000000003e-06,
|
28 |
-
"loss": 4.252,
|
29 |
-
"step": 2
|
30 |
-
},
|
31 |
-
{
|
32 |
-
"epoch": 0.01,
|
33 |
-
"learning_rate": 4.000000000000001e-06,
|
34 |
-
"loss": 4.2054,
|
35 |
-
"step": 3
|
36 |
-
},
|
37 |
-
{
|
38 |
-
"epoch": 0.02,
|
39 |
-
"learning_rate": 6e-06,
|
40 |
-
"loss": 4.1624,
|
41 |
-
"step": 4
|
42 |
-
},
|
43 |
-
{
|
44 |
-
"epoch": 0.02,
|
45 |
-
"learning_rate": 8.000000000000001e-06,
|
46 |
-
"loss": 3.9787,
|
47 |
-
"step": 5
|
48 |
-
},
|
49 |
-
{
|
50 |
-
"epoch": 0.03,
|
51 |
-
"learning_rate": 1e-05,
|
52 |
-
"loss": 3.7979,
|
53 |
-
"step": 6
|
54 |
-
},
|
55 |
-
{
|
56 |
-
"epoch": 0.03,
|
57 |
-
"learning_rate": 1.2e-05,
|
58 |
-
"loss": 3.8982,
|
59 |
-
"step": 7
|
60 |
-
},
|
61 |
-
{
|
62 |
-
"epoch": 0.04,
|
63 |
-
"learning_rate": 1.4000000000000001e-05,
|
64 |
-
"loss": 3.805,
|
65 |
-
"step": 8
|
66 |
-
},
|
67 |
-
{
|
68 |
-
"epoch": 0.04,
|
69 |
-
"learning_rate": 1.6000000000000003e-05,
|
70 |
-
"loss": 3.7176,
|
71 |
-
"step": 9
|
72 |
-
},
|
73 |
-
{
|
74 |
-
"epoch": 0.05,
|
75 |
-
"learning_rate": 1.8e-05,
|
76 |
-
"loss": 3.4755,
|
77 |
-
"step": 10
|
78 |
-
},
|
79 |
-
{
|
80 |
-
"epoch": 0.05,
|
81 |
-
"learning_rate": 2e-05,
|
82 |
-
"loss": 3.6401,
|
83 |
-
"step": 11
|
84 |
-
},
|
85 |
-
{
|
86 |
-
"epoch": 0.06,
|
87 |
-
"learning_rate": 2.2000000000000003e-05,
|
88 |
-
"loss": 3.5615,
|
89 |
-
"step": 12
|
90 |
-
},
|
91 |
-
{
|
92 |
-
"epoch": 0.06,
|
93 |
-
"learning_rate": 2.4e-05,
|
94 |
-
"loss": 3.5286,
|
95 |
-
"step": 13
|
96 |
-
},
|
97 |
-
{
|
98 |
-
"epoch": 0.07,
|
99 |
-
"learning_rate": 2.6000000000000002e-05,
|
100 |
-
"loss": 3.5437,
|
101 |
-
"step": 14
|
102 |
-
},
|
103 |
-
{
|
104 |
-
"epoch": 0.07,
|
105 |
-
"learning_rate": 2.8000000000000003e-05,
|
106 |
-
"loss": 3.5163,
|
107 |
-
"step": 15
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"epoch": 0.08,
|
111 |
-
"learning_rate": 3e-05,
|
112 |
-
"loss": 3.4108,
|
113 |
-
"step": 16
|
114 |
-
},
|
115 |
-
{
|
116 |
-
"epoch": 0.08,
|
117 |
-
"learning_rate": 3.2000000000000005e-05,
|
118 |
-
"loss": 3.3637,
|
119 |
-
"step": 17
|
120 |
-
},
|
121 |
-
{
|
122 |
-
"epoch": 0.09,
|
123 |
-
"learning_rate": 3.4000000000000007e-05,
|
124 |
-
"loss": 3.3538,
|
125 |
-
"step": 18
|
126 |
-
},
|
127 |
-
{
|
128 |
-
"epoch": 0.09,
|
129 |
-
"learning_rate": 3.6e-05,
|
130 |
-
"loss": 3.3819,
|
131 |
-
"step": 19
|
132 |
-
},
|
133 |
-
{
|
134 |
-
"epoch": 0.1,
|
135 |
-
"learning_rate": 3.8e-05,
|
136 |
-
"loss": 3.2511,
|
137 |
-
"step": 20
|
138 |
-
},
|
139 |
-
{
|
140 |
-
"epoch": 0.1,
|
141 |
-
"learning_rate": 4e-05,
|
142 |
-
"loss": 3.3211,
|
143 |
-
"step": 21
|
144 |
-
},
|
145 |
-
{
|
146 |
-
"epoch": 0.11,
|
147 |
-
"learning_rate": 4.2e-05,
|
148 |
-
"loss": 3.2764,
|
149 |
-
"step": 22
|
150 |
-
},
|
151 |
-
{
|
152 |
-
"epoch": 0.11,
|
153 |
-
"learning_rate": 4.4000000000000006e-05,
|
154 |
-
"loss": 3.0653,
|
155 |
-
"step": 23
|
156 |
-
},
|
157 |
-
{
|
158 |
-
"epoch": 0.12,
|
159 |
-
"learning_rate": 4.600000000000001e-05,
|
160 |
-
"loss": 3.0859,
|
161 |
-
"step": 24
|
162 |
-
},
|
163 |
-
{
|
164 |
-
"epoch": 0.12,
|
165 |
-
"learning_rate": 4.8e-05,
|
166 |
-
"loss": 3.0804,
|
167 |
-
"step": 25
|
168 |
-
},
|
169 |
-
{
|
170 |
-
"epoch": 0.13,
|
171 |
-
"learning_rate": 5e-05,
|
172 |
-
"loss": 2.9774,
|
173 |
-
"step": 26
|
174 |
-
},
|
175 |
-
{
|
176 |
-
"epoch": 0.13,
|
177 |
-
"learning_rate": 5.2000000000000004e-05,
|
178 |
-
"loss": 2.9269,
|
179 |
-
"step": 27
|
180 |
-
},
|
181 |
-
{
|
182 |
-
"epoch": 0.14,
|
183 |
-
"learning_rate": 5.4000000000000005e-05,
|
184 |
-
"loss": 3.0926,
|
185 |
-
"step": 28
|
186 |
-
},
|
187 |
-
{
|
188 |
-
"epoch": 0.14,
|
189 |
-
"learning_rate": 5.6000000000000006e-05,
|
190 |
-
"loss": 2.9725,
|
191 |
-
"step": 29
|
192 |
-
},
|
193 |
-
{
|
194 |
-
"epoch": 0.15,
|
195 |
-
"learning_rate": 5.8e-05,
|
196 |
-
"loss": 3.0293,
|
197 |
-
"step": 30
|
198 |
-
},
|
199 |
-
{
|
200 |
-
"epoch": 0.15,
|
201 |
-
"learning_rate": 6e-05,
|
202 |
-
"loss": 3.0903,
|
203 |
-
"step": 31
|
204 |
-
},
|
205 |
-
{
|
206 |
-
"epoch": 0.15,
|
207 |
-
"eval_loss": 2.9962990283966064,
|
208 |
-
"eval_runtime": 7.3671,
|
209 |
-
"eval_samples_per_second": 163.022,
|
210 |
-
"eval_steps_per_second": 54.431,
|
211 |
-
"step": 31
|
212 |
-
},
|
213 |
-
{
|
214 |
-
"epoch": 0.16,
|
215 |
-
"learning_rate": 6.2e-05,
|
216 |
-
"loss": 2.9903,
|
217 |
-
"step": 32
|
218 |
-
},
|
219 |
-
{
|
220 |
-
"epoch": 0.16,
|
221 |
-
"learning_rate": 6.400000000000001e-05,
|
222 |
-
"loss": 3.0196,
|
223 |
-
"step": 33
|
224 |
-
},
|
225 |
-
{
|
226 |
-
"epoch": 0.17,
|
227 |
-
"learning_rate": 6.6e-05,
|
228 |
-
"loss": 3.0288,
|
229 |
-
"step": 34
|
230 |
-
},
|
231 |
-
{
|
232 |
-
"epoch": 0.17,
|
233 |
-
"learning_rate": 6.800000000000001e-05,
|
234 |
-
"loss": 3.0071,
|
235 |
-
"step": 35
|
236 |
-
},
|
237 |
-
{
|
238 |
-
"epoch": 0.17,
|
239 |
-
"learning_rate": 7e-05,
|
240 |
-
"loss": 3.0393,
|
241 |
-
"step": 36
|
242 |
-
},
|
243 |
-
{
|
244 |
-
"epoch": 0.18,
|
245 |
-
"learning_rate": 7.2e-05,
|
246 |
-
"loss": 2.9937,
|
247 |
-
"step": 37
|
248 |
-
},
|
249 |
-
{
|
250 |
-
"epoch": 0.18,
|
251 |
-
"learning_rate": 7.4e-05,
|
252 |
-
"loss": 2.9988,
|
253 |
-
"step": 38
|
254 |
-
},
|
255 |
-
{
|
256 |
-
"epoch": 0.19,
|
257 |
-
"learning_rate": 7.6e-05,
|
258 |
-
"loss": 2.9331,
|
259 |
-
"step": 39
|
260 |
-
},
|
261 |
-
{
|
262 |
-
"epoch": 0.19,
|
263 |
-
"learning_rate": 7.800000000000001e-05,
|
264 |
-
"loss": 3.0414,
|
265 |
-
"step": 40
|
266 |
-
},
|
267 |
-
{
|
268 |
-
"epoch": 0.2,
|
269 |
-
"learning_rate": 8e-05,
|
270 |
-
"loss": 3.0237,
|
271 |
-
"step": 41
|
272 |
-
},
|
273 |
-
{
|
274 |
-
"epoch": 0.2,
|
275 |
-
"learning_rate": 8.2e-05,
|
276 |
-
"loss": 2.9664,
|
277 |
-
"step": 42
|
278 |
-
},
|
279 |
-
{
|
280 |
-
"epoch": 0.21,
|
281 |
-
"learning_rate": 8.4e-05,
|
282 |
-
"loss": 2.8639,
|
283 |
-
"step": 43
|
284 |
-
},
|
285 |
-
{
|
286 |
-
"epoch": 0.21,
|
287 |
-
"learning_rate": 8.6e-05,
|
288 |
-
"loss": 2.8562,
|
289 |
-
"step": 44
|
290 |
-
},
|
291 |
-
{
|
292 |
-
"epoch": 0.22,
|
293 |
-
"learning_rate": 8.800000000000001e-05,
|
294 |
-
"loss": 2.9632,
|
295 |
-
"step": 45
|
296 |
-
},
|
297 |
-
{
|
298 |
-
"epoch": 0.22,
|
299 |
-
"learning_rate": 9e-05,
|
300 |
-
"loss": 2.946,
|
301 |
-
"step": 46
|
302 |
-
},
|
303 |
-
{
|
304 |
-
"epoch": 0.23,
|
305 |
-
"learning_rate": 9.200000000000001e-05,
|
306 |
-
"loss": 2.8428,
|
307 |
-
"step": 47
|
308 |
-
},
|
309 |
-
{
|
310 |
-
"epoch": 0.23,
|
311 |
-
"learning_rate": 9.4e-05,
|
312 |
-
"loss": 2.9827,
|
313 |
-
"step": 48
|
314 |
-
},
|
315 |
-
{
|
316 |
-
"epoch": 0.24,
|
317 |
-
"learning_rate": 9.6e-05,
|
318 |
-
"loss": 2.9512,
|
319 |
-
"step": 49
|
320 |
-
},
|
321 |
-
{
|
322 |
-
"epoch": 0.24,
|
323 |
-
"learning_rate": 9.8e-05,
|
324 |
-
"loss": 2.8997,
|
325 |
-
"step": 50
|
326 |
-
},
|
327 |
-
{
|
328 |
-
"epoch": 0.25,
|
329 |
-
"learning_rate": 0.0001,
|
330 |
-
"loss": 2.9762,
|
331 |
-
"step": 51
|
332 |
-
},
|
333 |
-
{
|
334 |
-
"epoch": 0.25,
|
335 |
-
"learning_rate": 0.00010200000000000001,
|
336 |
-
"loss": 3.0429,
|
337 |
-
"step": 52
|
338 |
-
},
|
339 |
-
{
|
340 |
-
"epoch": 0.26,
|
341 |
-
"learning_rate": 0.00010400000000000001,
|
342 |
-
"loss": 3.0223,
|
343 |
-
"step": 53
|
344 |
-
},
|
345 |
-
{
|
346 |
-
"epoch": 0.26,
|
347 |
-
"learning_rate": 0.00010600000000000002,
|
348 |
-
"loss": 3.0007,
|
349 |
-
"step": 54
|
350 |
-
},
|
351 |
-
{
|
352 |
-
"epoch": 0.27,
|
353 |
-
"learning_rate": 0.00010800000000000001,
|
354 |
-
"loss": 3.0436,
|
355 |
-
"step": 55
|
356 |
-
},
|
357 |
-
{
|
358 |
-
"epoch": 0.27,
|
359 |
-
"learning_rate": 0.00011000000000000002,
|
360 |
-
"loss": 3.0151,
|
361 |
-
"step": 56
|
362 |
-
},
|
363 |
-
{
|
364 |
-
"epoch": 0.28,
|
365 |
-
"learning_rate": 0.00011200000000000001,
|
366 |
-
"loss": 2.9909,
|
367 |
-
"step": 57
|
368 |
-
},
|
369 |
-
{
|
370 |
-
"epoch": 0.28,
|
371 |
-
"learning_rate": 0.00011399999999999999,
|
372 |
-
"loss": 2.9942,
|
373 |
-
"step": 58
|
374 |
-
},
|
375 |
-
{
|
376 |
-
"epoch": 0.29,
|
377 |
-
"learning_rate": 0.000116,
|
378 |
-
"loss": 3.0098,
|
379 |
-
"step": 59
|
380 |
-
},
|
381 |
-
{
|
382 |
-
"epoch": 0.29,
|
383 |
-
"learning_rate": 0.000118,
|
384 |
-
"loss": 3.0353,
|
385 |
-
"step": 60
|
386 |
-
},
|
387 |
-
{
|
388 |
-
"epoch": 0.3,
|
389 |
-
"learning_rate": 0.00012,
|
390 |
-
"loss": 3.0671,
|
391 |
-
"step": 61
|
392 |
-
},
|
393 |
-
{
|
394 |
-
"epoch": 0.3,
|
395 |
-
"learning_rate": 0.000122,
|
396 |
-
"loss": 2.9824,
|
397 |
-
"step": 62
|
398 |
-
},
|
399 |
-
{
|
400 |
-
"epoch": 0.3,
|
401 |
-
"eval_loss": 3.022158145904541,
|
402 |
-
"eval_runtime": 7.3702,
|
403 |
-
"eval_samples_per_second": 162.953,
|
404 |
-
"eval_steps_per_second": 54.408,
|
405 |
-
"step": 62
|
406 |
-
},
|
407 |
-
{
|
408 |
-
"epoch": 0.31,
|
409 |
-
"learning_rate": 0.000124,
|
410 |
-
"loss": 3.0207,
|
411 |
-
"step": 63
|
412 |
-
},
|
413 |
-
{
|
414 |
-
"epoch": 0.31,
|
415 |
-
"learning_rate": 0.000126,
|
416 |
-
"loss": 2.9048,
|
417 |
-
"step": 64
|
418 |
-
},
|
419 |
-
{
|
420 |
-
"epoch": 0.32,
|
421 |
-
"learning_rate": 0.00012800000000000002,
|
422 |
-
"loss": 3.0518,
|
423 |
-
"step": 65
|
424 |
-
},
|
425 |
-
{
|
426 |
-
"epoch": 0.32,
|
427 |
-
"learning_rate": 0.00013000000000000002,
|
428 |
-
"loss": 3.0854,
|
429 |
-
"step": 66
|
430 |
-
},
|
431 |
-
{
|
432 |
-
"epoch": 0.33,
|
433 |
-
"learning_rate": 0.000132,
|
434 |
-
"loss": 3.0317,
|
435 |
-
"step": 67
|
436 |
-
},
|
437 |
-
{
|
438 |
-
"epoch": 0.33,
|
439 |
-
"learning_rate": 0.000134,
|
440 |
-
"loss": 3.0313,
|
441 |
-
"step": 68
|
442 |
-
},
|
443 |
-
{
|
444 |
-
"epoch": 0.33,
|
445 |
-
"learning_rate": 0.00013600000000000003,
|
446 |
-
"loss": 3.0753,
|
447 |
-
"step": 69
|
448 |
-
},
|
449 |
-
{
|
450 |
-
"epoch": 0.34,
|
451 |
-
"learning_rate": 0.000138,
|
452 |
-
"loss": 2.9999,
|
453 |
-
"step": 70
|
454 |
-
},
|
455 |
-
{
|
456 |
-
"epoch": 0.34,
|
457 |
-
"learning_rate": 0.00014,
|
458 |
-
"loss": 3.0423,
|
459 |
-
"step": 71
|
460 |
-
},
|
461 |
-
{
|
462 |
-
"epoch": 0.35,
|
463 |
-
"learning_rate": 0.000142,
|
464 |
-
"loss": 2.9642,
|
465 |
-
"step": 72
|
466 |
-
},
|
467 |
-
{
|
468 |
-
"epoch": 0.35,
|
469 |
-
"learning_rate": 0.000144,
|
470 |
-
"loss": 2.9575,
|
471 |
-
"step": 73
|
472 |
-
},
|
473 |
-
{
|
474 |
-
"epoch": 0.36,
|
475 |
-
"learning_rate": 0.000146,
|
476 |
-
"loss": 2.9854,
|
477 |
-
"step": 74
|
478 |
-
},
|
479 |
-
{
|
480 |
-
"epoch": 0.36,
|
481 |
-
"learning_rate": 0.000148,
|
482 |
-
"loss": 2.9729,
|
483 |
-
"step": 75
|
484 |
-
},
|
485 |
-
{
|
486 |
-
"epoch": 0.37,
|
487 |
-
"learning_rate": 0.00015000000000000001,
|
488 |
-
"loss": 2.9176,
|
489 |
-
"step": 76
|
490 |
-
},
|
491 |
-
{
|
492 |
-
"epoch": 0.37,
|
493 |
-
"learning_rate": 0.000152,
|
494 |
-
"loss": 2.947,
|
495 |
-
"step": 77
|
496 |
-
},
|
497 |
-
{
|
498 |
-
"epoch": 0.38,
|
499 |
-
"learning_rate": 0.000154,
|
500 |
-
"loss": 3.0542,
|
501 |
-
"step": 78
|
502 |
-
},
|
503 |
-
{
|
504 |
-
"epoch": 0.38,
|
505 |
-
"learning_rate": 0.00015600000000000002,
|
506 |
-
"loss": 3.0718,
|
507 |
-
"step": 79
|
508 |
-
},
|
509 |
-
{
|
510 |
-
"epoch": 0.39,
|
511 |
-
"learning_rate": 0.00015800000000000002,
|
512 |
-
"loss": 3.027,
|
513 |
-
"step": 80
|
514 |
-
},
|
515 |
-
{
|
516 |
-
"epoch": 0.39,
|
517 |
-
"learning_rate": 0.00016,
|
518 |
-
"loss": 3.1764,
|
519 |
-
"step": 81
|
520 |
-
},
|
521 |
-
{
|
522 |
-
"epoch": 0.4,
|
523 |
-
"learning_rate": 0.000162,
|
524 |
-
"loss": 3.1091,
|
525 |
-
"step": 82
|
526 |
-
},
|
527 |
-
{
|
528 |
-
"epoch": 0.4,
|
529 |
-
"learning_rate": 0.000164,
|
530 |
-
"loss": 3.0931,
|
531 |
-
"step": 83
|
532 |
-
},
|
533 |
-
{
|
534 |
-
"epoch": 0.41,
|
535 |
-
"learning_rate": 0.000166,
|
536 |
-
"loss": 3.2712,
|
537 |
-
"step": 84
|
538 |
-
},
|
539 |
-
{
|
540 |
-
"epoch": 0.41,
|
541 |
-
"learning_rate": 0.000168,
|
542 |
-
"loss": 3.3353,
|
543 |
-
"step": 85
|
544 |
-
},
|
545 |
-
{
|
546 |
-
"epoch": 0.42,
|
547 |
-
"learning_rate": 0.00017,
|
548 |
-
"loss": 3.4876,
|
549 |
-
"step": 86
|
550 |
-
},
|
551 |
-
{
|
552 |
-
"epoch": 0.42,
|
553 |
-
"learning_rate": 0.000172,
|
554 |
-
"loss": 3.3383,
|
555 |
-
"step": 87
|
556 |
-
},
|
557 |
-
{
|
558 |
-
"epoch": 0.43,
|
559 |
-
"learning_rate": 0.000174,
|
560 |
-
"loss": 3.1497,
|
561 |
-
"step": 88
|
562 |
-
},
|
563 |
-
{
|
564 |
-
"epoch": 0.43,
|
565 |
-
"learning_rate": 0.00017600000000000002,
|
566 |
-
"loss": 3.1029,
|
567 |
-
"step": 89
|
568 |
-
},
|
569 |
-
{
|
570 |
-
"epoch": 0.44,
|
571 |
-
"learning_rate": 0.00017800000000000002,
|
572 |
-
"loss": 3.1484,
|
573 |
-
"step": 90
|
574 |
-
},
|
575 |
-
{
|
576 |
-
"epoch": 0.44,
|
577 |
-
"learning_rate": 0.00018,
|
578 |
-
"loss": 3.1156,
|
579 |
-
"step": 91
|
580 |
-
},
|
581 |
-
{
|
582 |
-
"epoch": 0.45,
|
583 |
-
"learning_rate": 0.000182,
|
584 |
-
"loss": 3.2557,
|
585 |
-
"step": 92
|
586 |
-
},
|
587 |
-
{
|
588 |
-
"epoch": 0.45,
|
589 |
-
"learning_rate": 0.00018400000000000003,
|
590 |
-
"loss": 3.173,
|
591 |
-
"step": 93
|
592 |
-
},
|
593 |
-
{
|
594 |
-
"epoch": 0.45,
|
595 |
-
"eval_loss": 3.150902032852173,
|
596 |
-
"eval_runtime": 7.5676,
|
597 |
-
"eval_samples_per_second": 158.703,
|
598 |
-
"eval_steps_per_second": 52.989,
|
599 |
-
"step": 93
|
600 |
-
},
|
601 |
-
{
|
602 |
-
"epoch": 0.46,
|
603 |
-
"learning_rate": 0.00018600000000000002,
|
604 |
-
"loss": 3.128,
|
605 |
-
"step": 94
|
606 |
-
},
|
607 |
-
{
|
608 |
-
"epoch": 0.46,
|
609 |
-
"learning_rate": 0.000188,
|
610 |
-
"loss": 3.146,
|
611 |
-
"step": 95
|
612 |
-
},
|
613 |
-
{
|
614 |
-
"epoch": 0.47,
|
615 |
-
"learning_rate": 0.00019,
|
616 |
-
"loss": 3.194,
|
617 |
-
"step": 96
|
618 |
-
},
|
619 |
-
{
|
620 |
-
"epoch": 0.47,
|
621 |
-
"learning_rate": 0.000192,
|
622 |
-
"loss": 3.0987,
|
623 |
-
"step": 97
|
624 |
-
},
|
625 |
-
{
|
626 |
-
"epoch": 0.48,
|
627 |
-
"learning_rate": 0.000194,
|
628 |
-
"loss": 3.2405,
|
629 |
-
"step": 98
|
630 |
-
},
|
631 |
-
{
|
632 |
-
"epoch": 0.48,
|
633 |
-
"learning_rate": 0.000196,
|
634 |
-
"loss": 3.1568,
|
635 |
-
"step": 99
|
636 |
-
},
|
637 |
-
{
|
638 |
-
"epoch": 0.49,
|
639 |
-
"learning_rate": 0.00019800000000000002,
|
640 |
-
"loss": 3.1488,
|
641 |
-
"step": 100
|
642 |
-
},
|
643 |
-
{
|
644 |
-
"epoch": 0.49,
|
645 |
-
"learning_rate": 0.0002,
|
646 |
-
"loss": 3.2105,
|
647 |
-
"step": 101
|
648 |
-
},
|
649 |
-
{
|
650 |
-
"epoch": 0.5,
|
651 |
-
"learning_rate": 0.0001996138996138996,
|
652 |
-
"loss": 3.2575,
|
653 |
-
"step": 102
|
654 |
-
},
|
655 |
-
{
|
656 |
-
"epoch": 0.5,
|
657 |
-
"learning_rate": 0.00019922779922779924,
|
658 |
-
"loss": 3.1921,
|
659 |
-
"step": 103
|
660 |
-
},
|
661 |
-
{
|
662 |
-
"epoch": 0.5,
|
663 |
-
"learning_rate": 0.00019884169884169884,
|
664 |
-
"loss": 3.2369,
|
665 |
-
"step": 104
|
666 |
-
},
|
667 |
-
{
|
668 |
-
"epoch": 0.51,
|
669 |
-
"learning_rate": 0.00019845559845559847,
|
670 |
-
"loss": 3.1031,
|
671 |
-
"step": 105
|
672 |
-
},
|
673 |
-
{
|
674 |
-
"epoch": 0.51,
|
675 |
-
"learning_rate": 0.00019806949806949807,
|
676 |
-
"loss": 3.2618,
|
677 |
-
"step": 106
|
678 |
-
},
|
679 |
-
{
|
680 |
-
"epoch": 0.52,
|
681 |
-
"learning_rate": 0.0001976833976833977,
|
682 |
-
"loss": 3.2034,
|
683 |
-
"step": 107
|
684 |
-
},
|
685 |
-
{
|
686 |
-
"epoch": 0.52,
|
687 |
-
"learning_rate": 0.0001972972972972973,
|
688 |
-
"loss": 3.2094,
|
689 |
-
"step": 108
|
690 |
-
},
|
691 |
-
{
|
692 |
-
"epoch": 0.53,
|
693 |
-
"learning_rate": 0.00019691119691119693,
|
694 |
-
"loss": 3.1894,
|
695 |
-
"step": 109
|
696 |
-
},
|
697 |
-
{
|
698 |
-
"epoch": 0.53,
|
699 |
-
"learning_rate": 0.00019652509652509653,
|
700 |
-
"loss": 3.1614,
|
701 |
-
"step": 110
|
702 |
-
},
|
703 |
-
{
|
704 |
-
"epoch": 0.54,
|
705 |
-
"learning_rate": 0.00019613899613899616,
|
706 |
-
"loss": 3.176,
|
707 |
-
"step": 111
|
708 |
-
},
|
709 |
-
{
|
710 |
-
"epoch": 0.54,
|
711 |
-
"learning_rate": 0.00019575289575289576,
|
712 |
-
"loss": 3.2153,
|
713 |
-
"step": 112
|
714 |
-
},
|
715 |
-
{
|
716 |
-
"epoch": 0.55,
|
717 |
-
"learning_rate": 0.0001953667953667954,
|
718 |
-
"loss": 3.0923,
|
719 |
-
"step": 113
|
720 |
-
},
|
721 |
-
{
|
722 |
-
"epoch": 0.55,
|
723 |
-
"learning_rate": 0.000194980694980695,
|
724 |
-
"loss": 3.2878,
|
725 |
-
"step": 114
|
726 |
-
},
|
727 |
-
{
|
728 |
-
"epoch": 0.56,
|
729 |
-
"learning_rate": 0.00019459459459459462,
|
730 |
-
"loss": 3.0605,
|
731 |
-
"step": 115
|
732 |
-
},
|
733 |
-
{
|
734 |
-
"epoch": 0.56,
|
735 |
-
"learning_rate": 0.00019420849420849422,
|
736 |
-
"loss": 3.1282,
|
737 |
-
"step": 116
|
738 |
-
},
|
739 |
-
{
|
740 |
-
"epoch": 0.57,
|
741 |
-
"learning_rate": 0.00019382239382239382,
|
742 |
-
"loss": 3.1204,
|
743 |
-
"step": 117
|
744 |
-
},
|
745 |
-
{
|
746 |
-
"epoch": 0.57,
|
747 |
-
"learning_rate": 0.00019343629343629345,
|
748 |
-
"loss": 3.0932,
|
749 |
-
"step": 118
|
750 |
-
},
|
751 |
-
{
|
752 |
-
"epoch": 0.58,
|
753 |
-
"learning_rate": 0.00019305019305019305,
|
754 |
-
"loss": 3.2913,
|
755 |
-
"step": 119
|
756 |
-
},
|
757 |
-
{
|
758 |
-
"epoch": 0.58,
|
759 |
-
"learning_rate": 0.00019266409266409268,
|
760 |
-
"loss": 3.1809,
|
761 |
-
"step": 120
|
762 |
-
},
|
763 |
-
{
|
764 |
-
"epoch": 0.59,
|
765 |
-
"learning_rate": 0.00019227799227799228,
|
766 |
-
"loss": 3.2408,
|
767 |
-
"step": 121
|
768 |
-
},
|
769 |
-
{
|
770 |
-
"epoch": 0.59,
|
771 |
-
"learning_rate": 0.0001918918918918919,
|
772 |
-
"loss": 3.8133,
|
773 |
-
"step": 122
|
774 |
-
},
|
775 |
-
{
|
776 |
-
"epoch": 0.6,
|
777 |
-
"learning_rate": 0.0001915057915057915,
|
778 |
-
"loss": 3.1869,
|
779 |
-
"step": 123
|
780 |
-
},
|
781 |
-
{
|
782 |
-
"epoch": 0.6,
|
783 |
-
"learning_rate": 0.00019111969111969114,
|
784 |
-
"loss": 3.1053,
|
785 |
-
"step": 124
|
786 |
-
},
|
787 |
-
{
|
788 |
-
"epoch": 0.6,
|
789 |
-
"eval_loss": 3.205463409423828,
|
790 |
-
"eval_runtime": 7.3677,
|
791 |
-
"eval_samples_per_second": 163.009,
|
792 |
-
"eval_steps_per_second": 54.427,
|
793 |
-
"step": 124
|
794 |
-
},
|
795 |
-
{
|
796 |
-
"epoch": 0.61,
|
797 |
-
"learning_rate": 0.00019073359073359074,
|
798 |
-
"loss": 3.1206,
|
799 |
-
"step": 125
|
800 |
-
},
|
801 |
-
{
|
802 |
-
"epoch": 0.61,
|
803 |
-
"learning_rate": 0.00019034749034749037,
|
804 |
-
"loss": 3.1233,
|
805 |
-
"step": 126
|
806 |
-
},
|
807 |
-
{
|
808 |
-
"epoch": 0.62,
|
809 |
-
"learning_rate": 0.00018996138996138997,
|
810 |
-
"loss": 3.0673,
|
811 |
-
"step": 127
|
812 |
-
},
|
813 |
-
{
|
814 |
-
"epoch": 0.62,
|
815 |
-
"learning_rate": 0.0001895752895752896,
|
816 |
-
"loss": 3.1314,
|
817 |
-
"step": 128
|
818 |
-
},
|
819 |
-
{
|
820 |
-
"epoch": 0.63,
|
821 |
-
"learning_rate": 0.0001891891891891892,
|
822 |
-
"loss": 3.1997,
|
823 |
-
"step": 129
|
824 |
-
},
|
825 |
-
{
|
826 |
-
"epoch": 0.63,
|
827 |
-
"learning_rate": 0.0001888030888030888,
|
828 |
-
"loss": 3.1298,
|
829 |
-
"step": 130
|
830 |
-
},
|
831 |
-
{
|
832 |
-
"epoch": 0.64,
|
833 |
-
"learning_rate": 0.00018841698841698843,
|
834 |
-
"loss": 3.1821,
|
835 |
-
"step": 131
|
836 |
-
},
|
837 |
-
{
|
838 |
-
"epoch": 0.64,
|
839 |
-
"learning_rate": 0.00018803088803088803,
|
840 |
-
"loss": 3.2418,
|
841 |
-
"step": 132
|
842 |
-
},
|
843 |
-
{
|
844 |
-
"epoch": 0.65,
|
845 |
-
"learning_rate": 0.00018764478764478766,
|
846 |
-
"loss": 3.1543,
|
847 |
-
"step": 133
|
848 |
-
},
|
849 |
-
{
|
850 |
-
"epoch": 0.65,
|
851 |
-
"learning_rate": 0.00018725868725868726,
|
852 |
-
"loss": 3.2136,
|
853 |
-
"step": 134
|
854 |
-
},
|
855 |
-
{
|
856 |
-
"epoch": 0.66,
|
857 |
-
"learning_rate": 0.0001868725868725869,
|
858 |
-
"loss": 3.3314,
|
859 |
-
"step": 135
|
860 |
-
},
|
861 |
-
{
|
862 |
-
"epoch": 0.66,
|
863 |
-
"learning_rate": 0.0001864864864864865,
|
864 |
-
"loss": 3.2328,
|
865 |
-
"step": 136
|
866 |
-
},
|
867 |
-
{
|
868 |
-
"epoch": 0.67,
|
869 |
-
"learning_rate": 0.00018610038610038612,
|
870 |
-
"loss": 3.2225,
|
871 |
-
"step": 137
|
872 |
-
},
|
873 |
-
{
|
874 |
-
"epoch": 0.67,
|
875 |
-
"learning_rate": 0.00018571428571428572,
|
876 |
-
"loss": 3.1159,
|
877 |
-
"step": 138
|
878 |
-
},
|
879 |
-
{
|
880 |
-
"epoch": 0.67,
|
881 |
-
"learning_rate": 0.00018532818532818535,
|
882 |
-
"loss": 3.0339,
|
883 |
-
"step": 139
|
884 |
-
},
|
885 |
-
{
|
886 |
-
"epoch": 0.68,
|
887 |
-
"learning_rate": 0.00018494208494208495,
|
888 |
-
"loss": 3.2672,
|
889 |
-
"step": 140
|
890 |
-
},
|
891 |
-
{
|
892 |
-
"epoch": 0.68,
|
893 |
-
"learning_rate": 0.00018455598455598458,
|
894 |
-
"loss": 3.1237,
|
895 |
-
"step": 141
|
896 |
-
},
|
897 |
-
{
|
898 |
-
"epoch": 0.69,
|
899 |
-
"learning_rate": 0.00018416988416988418,
|
900 |
-
"loss": 3.1692,
|
901 |
-
"step": 142
|
902 |
-
},
|
903 |
-
{
|
904 |
-
"epoch": 0.69,
|
905 |
-
"learning_rate": 0.0001837837837837838,
|
906 |
-
"loss": 3.3243,
|
907 |
-
"step": 143
|
908 |
-
},
|
909 |
-
{
|
910 |
-
"epoch": 0.7,
|
911 |
-
"learning_rate": 0.0001833976833976834,
|
912 |
-
"loss": 3.0264,
|
913 |
-
"step": 144
|
914 |
-
},
|
915 |
-
{
|
916 |
-
"epoch": 0.7,
|
917 |
-
"learning_rate": 0.000183011583011583,
|
918 |
-
"loss": 3.2045,
|
919 |
-
"step": 145
|
920 |
-
},
|
921 |
-
{
|
922 |
-
"epoch": 0.71,
|
923 |
-
"learning_rate": 0.00018262548262548264,
|
924 |
-
"loss": 3.1966,
|
925 |
-
"step": 146
|
926 |
-
},
|
927 |
-
{
|
928 |
-
"epoch": 0.71,
|
929 |
-
"learning_rate": 0.00018223938223938224,
|
930 |
-
"loss": 3.0587,
|
931 |
-
"step": 147
|
932 |
-
},
|
933 |
-
{
|
934 |
-
"epoch": 0.72,
|
935 |
-
"learning_rate": 0.00018185328185328187,
|
936 |
-
"loss": 3.2979,
|
937 |
-
"step": 148
|
938 |
-
},
|
939 |
-
{
|
940 |
-
"epoch": 0.72,
|
941 |
-
"learning_rate": 0.00018146718146718147,
|
942 |
-
"loss": 3.1549,
|
943 |
-
"step": 149
|
944 |
-
},
|
945 |
-
{
|
946 |
-
"epoch": 0.73,
|
947 |
-
"learning_rate": 0.0001810810810810811,
|
948 |
-
"loss": 3.1682,
|
949 |
-
"step": 150
|
950 |
-
},
|
951 |
-
{
|
952 |
-
"epoch": 0.73,
|
953 |
-
"learning_rate": 0.0001806949806949807,
|
954 |
-
"loss": 3.3214,
|
955 |
-
"step": 151
|
956 |
-
},
|
957 |
-
{
|
958 |
-
"epoch": 0.74,
|
959 |
-
"learning_rate": 0.00018030888030888032,
|
960 |
-
"loss": 3.1783,
|
961 |
-
"step": 152
|
962 |
-
},
|
963 |
-
{
|
964 |
-
"epoch": 0.74,
|
965 |
-
"learning_rate": 0.00017992277992277993,
|
966 |
-
"loss": 3.2268,
|
967 |
-
"step": 153
|
968 |
-
},
|
969 |
-
{
|
970 |
-
"epoch": 0.75,
|
971 |
-
"learning_rate": 0.00017953667953667955,
|
972 |
-
"loss": 3.2843,
|
973 |
-
"step": 154
|
974 |
-
},
|
975 |
-
{
|
976 |
-
"epoch": 0.75,
|
977 |
-
"learning_rate": 0.00017915057915057916,
|
978 |
-
"loss": 3.3124,
|
979 |
-
"step": 155
|
980 |
-
},
|
981 |
-
{
|
982 |
-
"epoch": 0.75,
|
983 |
-
"eval_loss": 3.1898298263549805,
|
984 |
-
"eval_runtime": 7.5884,
|
985 |
-
"eval_samples_per_second": 158.268,
|
986 |
-
"eval_steps_per_second": 52.844,
|
987 |
-
"step": 155
|
988 |
-
},
|
989 |
-
{
|
990 |
-
"epoch": 0.76,
|
991 |
-
"learning_rate": 0.00017876447876447878,
|
992 |
-
"loss": 3.1855,
|
993 |
-
"step": 156
|
994 |
-
},
|
995 |
-
{
|
996 |
-
"epoch": 0.76,
|
997 |
-
"learning_rate": 0.00017837837837837839,
|
998 |
-
"loss": 3.2096,
|
999 |
-
"step": 157
|
1000 |
-
},
|
1001 |
-
{
|
1002 |
-
"epoch": 0.77,
|
1003 |
-
"learning_rate": 0.00017799227799227801,
|
1004 |
-
"loss": 3.2174,
|
1005 |
-
"step": 158
|
1006 |
-
},
|
1007 |
-
{
|
1008 |
-
"epoch": 0.77,
|
1009 |
-
"learning_rate": 0.00017760617760617762,
|
1010 |
-
"loss": 3.2775,
|
1011 |
-
"step": 159
|
1012 |
-
},
|
1013 |
-
{
|
1014 |
-
"epoch": 0.78,
|
1015 |
-
"learning_rate": 0.00017722007722007722,
|
1016 |
-
"loss": 3.2065,
|
1017 |
-
"step": 160
|
1018 |
-
},
|
1019 |
-
{
|
1020 |
-
"epoch": 0.78,
|
1021 |
-
"learning_rate": 0.00017683397683397684,
|
1022 |
-
"loss": 3.2905,
|
1023 |
-
"step": 161
|
1024 |
-
},
|
1025 |
-
{
|
1026 |
-
"epoch": 0.79,
|
1027 |
-
"learning_rate": 0.00017644787644787645,
|
1028 |
-
"loss": 3.1591,
|
1029 |
-
"step": 162
|
1030 |
-
},
|
1031 |
-
{
|
1032 |
-
"epoch": 0.79,
|
1033 |
-
"learning_rate": 0.00017606177606177607,
|
1034 |
-
"loss": 3.2721,
|
1035 |
-
"step": 163
|
1036 |
-
},
|
1037 |
-
{
|
1038 |
-
"epoch": 0.8,
|
1039 |
-
"learning_rate": 0.00017567567567567568,
|
1040 |
-
"loss": 3.1743,
|
1041 |
-
"step": 164
|
1042 |
-
},
|
1043 |
-
{
|
1044 |
-
"epoch": 0.8,
|
1045 |
-
"learning_rate": 0.0001752895752895753,
|
1046 |
-
"loss": 3.234,
|
1047 |
-
"step": 165
|
1048 |
-
},
|
1049 |
-
{
|
1050 |
-
"epoch": 0.81,
|
1051 |
-
"learning_rate": 0.0001749034749034749,
|
1052 |
-
"loss": 3.2775,
|
1053 |
-
"step": 166
|
1054 |
-
},
|
1055 |
-
{
|
1056 |
-
"epoch": 0.81,
|
1057 |
-
"learning_rate": 0.00017451737451737453,
|
1058 |
-
"loss": 3.2317,
|
1059 |
-
"step": 167
|
1060 |
-
},
|
1061 |
-
{
|
1062 |
-
"epoch": 0.82,
|
1063 |
-
"learning_rate": 0.00017413127413127413,
|
1064 |
-
"loss": 3.0691,
|
1065 |
-
"step": 168
|
1066 |
-
},
|
1067 |
-
{
|
1068 |
-
"epoch": 0.82,
|
1069 |
-
"learning_rate": 0.00017374517374517376,
|
1070 |
-
"loss": 3.1793,
|
1071 |
-
"step": 169
|
1072 |
-
},
|
1073 |
-
{
|
1074 |
-
"epoch": 0.83,
|
1075 |
-
"learning_rate": 0.00017335907335907336,
|
1076 |
-
"loss": 3.2259,
|
1077 |
-
"step": 170
|
1078 |
-
},
|
1079 |
-
{
|
1080 |
-
"epoch": 0.83,
|
1081 |
-
"learning_rate": 0.000172972972972973,
|
1082 |
-
"loss": 3.1813,
|
1083 |
-
"step": 171
|
1084 |
-
},
|
1085 |
-
{
|
1086 |
-
"epoch": 0.83,
|
1087 |
-
"learning_rate": 0.0001725868725868726,
|
1088 |
-
"loss": 3.2416,
|
1089 |
-
"step": 172
|
1090 |
-
},
|
1091 |
-
{
|
1092 |
-
"epoch": 0.84,
|
1093 |
-
"learning_rate": 0.0001722007722007722,
|
1094 |
-
"loss": 3.2016,
|
1095 |
-
"step": 173
|
1096 |
-
},
|
1097 |
-
{
|
1098 |
-
"epoch": 0.84,
|
1099 |
-
"learning_rate": 0.00017181467181467182,
|
1100 |
-
"loss": 3.1766,
|
1101 |
-
"step": 174
|
1102 |
-
},
|
1103 |
-
{
|
1104 |
-
"epoch": 0.85,
|
1105 |
-
"learning_rate": 0.00017142857142857143,
|
1106 |
-
"loss": 3.0861,
|
1107 |
-
"step": 175
|
1108 |
-
},
|
1109 |
-
{
|
1110 |
-
"epoch": 0.85,
|
1111 |
-
"learning_rate": 0.00017104247104247105,
|
1112 |
-
"loss": 3.2104,
|
1113 |
-
"step": 176
|
1114 |
-
},
|
1115 |
-
{
|
1116 |
-
"epoch": 0.86,
|
1117 |
-
"learning_rate": 0.00017065637065637065,
|
1118 |
-
"loss": 3.273,
|
1119 |
-
"step": 177
|
1120 |
-
},
|
1121 |
-
{
|
1122 |
-
"epoch": 0.86,
|
1123 |
-
"learning_rate": 0.00017027027027027028,
|
1124 |
-
"loss": 3.2371,
|
1125 |
-
"step": 178
|
1126 |
-
},
|
1127 |
-
{
|
1128 |
-
"epoch": 0.87,
|
1129 |
-
"learning_rate": 0.00016988416988416988,
|
1130 |
-
"loss": 3.2654,
|
1131 |
-
"step": 179
|
1132 |
-
},
|
1133 |
-
{
|
1134 |
-
"epoch": 0.87,
|
1135 |
-
"learning_rate": 0.0001694980694980695,
|
1136 |
-
"loss": 3.1812,
|
1137 |
-
"step": 180
|
1138 |
-
},
|
1139 |
-
{
|
1140 |
-
"epoch": 0.88,
|
1141 |
-
"learning_rate": 0.00016911196911196911,
|
1142 |
-
"loss": 3.2781,
|
1143 |
-
"step": 181
|
1144 |
-
},
|
1145 |
-
{
|
1146 |
-
"epoch": 0.88,
|
1147 |
-
"learning_rate": 0.00016872586872586874,
|
1148 |
-
"loss": 3.1611,
|
1149 |
-
"step": 182
|
1150 |
-
},
|
1151 |
-
{
|
1152 |
-
"epoch": 0.89,
|
1153 |
-
"learning_rate": 0.00016833976833976834,
|
1154 |
-
"loss": 3.0902,
|
1155 |
-
"step": 183
|
1156 |
-
},
|
1157 |
-
{
|
1158 |
-
"epoch": 0.89,
|
1159 |
-
"learning_rate": 0.00016795366795366797,
|
1160 |
-
"loss": 3.2414,
|
1161 |
-
"step": 184
|
1162 |
-
},
|
1163 |
-
{
|
1164 |
-
"epoch": 0.9,
|
1165 |
-
"learning_rate": 0.00016756756756756757,
|
1166 |
-
"loss": 3.1472,
|
1167 |
-
"step": 185
|
1168 |
-
},
|
1169 |
-
{
|
1170 |
-
"epoch": 0.9,
|
1171 |
-
"learning_rate": 0.0001671814671814672,
|
1172 |
-
"loss": 3.1761,
|
1173 |
-
"step": 186
|
1174 |
-
},
|
1175 |
-
{
|
1176 |
-
"epoch": 0.9,
|
1177 |
-
"eval_loss": 3.1637256145477295,
|
1178 |
-
"eval_runtime": 7.3669,
|
1179 |
-
"eval_samples_per_second": 163.026,
|
1180 |
-
"eval_steps_per_second": 54.432,
|
1181 |
-
"step": 186
|
1182 |
-
},
|
1183 |
-
{
|
1184 |
-
"epoch": 0.91,
|
1185 |
-
"learning_rate": 0.0001667953667953668,
|
1186 |
-
"loss": 3.1409,
|
1187 |
-
"step": 187
|
1188 |
-
},
|
1189 |
-
{
|
1190 |
-
"epoch": 0.91,
|
1191 |
-
"learning_rate": 0.0001664092664092664,
|
1192 |
-
"loss": 3.2262,
|
1193 |
-
"step": 188
|
1194 |
-
},
|
1195 |
-
{
|
1196 |
-
"epoch": 0.92,
|
1197 |
-
"learning_rate": 0.00016602316602316603,
|
1198 |
-
"loss": 3.105,
|
1199 |
-
"step": 189
|
1200 |
-
},
|
1201 |
-
{
|
1202 |
-
"epoch": 0.92,
|
1203 |
-
"learning_rate": 0.00016563706563706563,
|
1204 |
-
"loss": 3.2596,
|
1205 |
-
"step": 190
|
1206 |
-
},
|
1207 |
-
{
|
1208 |
-
"epoch": 0.93,
|
1209 |
-
"learning_rate": 0.00016525096525096526,
|
1210 |
-
"loss": 3.1528,
|
1211 |
-
"step": 191
|
1212 |
-
},
|
1213 |
-
{
|
1214 |
-
"epoch": 0.93,
|
1215 |
-
"learning_rate": 0.00016486486486486486,
|
1216 |
-
"loss": 3.1561,
|
1217 |
-
"step": 192
|
1218 |
-
},
|
1219 |
-
{
|
1220 |
-
"epoch": 0.94,
|
1221 |
-
"learning_rate": 0.0001644787644787645,
|
1222 |
-
"loss": 3.2552,
|
1223 |
-
"step": 193
|
1224 |
-
},
|
1225 |
-
{
|
1226 |
-
"epoch": 0.94,
|
1227 |
-
"learning_rate": 0.0001640926640926641,
|
1228 |
-
"loss": 3.0347,
|
1229 |
-
"step": 194
|
1230 |
-
},
|
1231 |
-
{
|
1232 |
-
"epoch": 0.95,
|
1233 |
-
"learning_rate": 0.00016370656370656372,
|
1234 |
-
"loss": 3.0418,
|
1235 |
-
"step": 195
|
1236 |
-
},
|
1237 |
-
{
|
1238 |
-
"epoch": 0.95,
|
1239 |
-
"learning_rate": 0.00016332046332046332,
|
1240 |
-
"loss": 3.0838,
|
1241 |
-
"step": 196
|
1242 |
-
},
|
1243 |
-
{
|
1244 |
-
"epoch": 0.96,
|
1245 |
-
"learning_rate": 0.00016293436293436295,
|
1246 |
-
"loss": 3.1867,
|
1247 |
-
"step": 197
|
1248 |
-
},
|
1249 |
-
{
|
1250 |
-
"epoch": 0.96,
|
1251 |
-
"learning_rate": 0.00016254826254826255,
|
1252 |
-
"loss": 3.0373,
|
1253 |
-
"step": 198
|
1254 |
-
},
|
1255 |
-
{
|
1256 |
-
"epoch": 0.97,
|
1257 |
-
"learning_rate": 0.00016216216216216218,
|
1258 |
-
"loss": 2.9896,
|
1259 |
-
"step": 199
|
1260 |
-
},
|
1261 |
-
{
|
1262 |
-
"epoch": 0.97,
|
1263 |
-
"learning_rate": 0.00016177606177606178,
|
1264 |
-
"loss": 3.1511,
|
1265 |
-
"step": 200
|
1266 |
-
},
|
1267 |
-
{
|
1268 |
-
"epoch": 0.98,
|
1269 |
-
"learning_rate": 0.0001613899613899614,
|
1270 |
-
"loss": 3.1029,
|
1271 |
-
"step": 201
|
1272 |
-
},
|
1273 |
-
{
|
1274 |
-
"epoch": 0.98,
|
1275 |
-
"learning_rate": 0.000161003861003861,
|
1276 |
-
"loss": 3.2193,
|
1277 |
-
"step": 202
|
1278 |
-
},
|
1279 |
-
{
|
1280 |
-
"epoch": 0.99,
|
1281 |
-
"learning_rate": 0.0001606177606177606,
|
1282 |
-
"loss": 3.2214,
|
1283 |
-
"step": 203
|
1284 |
-
},
|
1285 |
-
{
|
1286 |
-
"epoch": 0.99,
|
1287 |
-
"learning_rate": 0.00016023166023166024,
|
1288 |
-
"loss": 3.1428,
|
1289 |
-
"step": 204
|
1290 |
-
},
|
1291 |
-
{
|
1292 |
-
"epoch": 1.0,
|
1293 |
-
"learning_rate": 0.00015984555984555984,
|
1294 |
-
"loss": 3.1259,
|
1295 |
-
"step": 205
|
1296 |
-
},
|
1297 |
-
{
|
1298 |
-
"epoch": 1.0,
|
1299 |
-
"learning_rate": 0.00015945945945945947,
|
1300 |
-
"loss": 3.2007,
|
1301 |
-
"step": 206
|
1302 |
-
},
|
1303 |
-
{
|
1304 |
-
"epoch": 1.0,
|
1305 |
-
"learning_rate": 0.00015907335907335907,
|
1306 |
-
"loss": 3.1123,
|
1307 |
-
"step": 207
|
1308 |
-
},
|
1309 |
-
{
|
1310 |
-
"epoch": 1.01,
|
1311 |
-
"learning_rate": 0.0001586872586872587,
|
1312 |
-
"loss": 3.3417,
|
1313 |
-
"step": 208
|
1314 |
-
},
|
1315 |
-
{
|
1316 |
-
"epoch": 1.01,
|
1317 |
-
"learning_rate": 0.0001583011583011583,
|
1318 |
-
"loss": 3.089,
|
1319 |
-
"step": 209
|
1320 |
-
},
|
1321 |
-
{
|
1322 |
-
"epoch": 1.02,
|
1323 |
-
"learning_rate": 0.00015791505791505793,
|
1324 |
-
"loss": 3.0972,
|
1325 |
-
"step": 210
|
1326 |
-
},
|
1327 |
-
{
|
1328 |
-
"epoch": 1.0,
|
1329 |
-
"learning_rate": 0.00015752895752895753,
|
1330 |
-
"loss": 2.1341,
|
1331 |
-
"step": 211
|
1332 |
-
},
|
1333 |
-
{
|
1334 |
-
"epoch": 1.01,
|
1335 |
-
"learning_rate": 0.00015714285714285716,
|
1336 |
-
"loss": 1.9415,
|
1337 |
-
"step": 212
|
1338 |
-
},
|
1339 |
-
{
|
1340 |
-
"epoch": 1.01,
|
1341 |
-
"learning_rate": 0.00015675675675675676,
|
1342 |
-
"loss": 1.959,
|
1343 |
-
"step": 213
|
1344 |
-
},
|
1345 |
-
{
|
1346 |
-
"epoch": 1.02,
|
1347 |
-
"learning_rate": 0.0001563706563706564,
|
1348 |
-
"loss": 1.857,
|
1349 |
-
"step": 214
|
1350 |
-
},
|
1351 |
-
{
|
1352 |
-
"epoch": 1.02,
|
1353 |
-
"learning_rate": 0.000155984555984556,
|
1354 |
-
"loss": 1.8255,
|
1355 |
-
"step": 215
|
1356 |
-
},
|
1357 |
-
{
|
1358 |
-
"epoch": 1.03,
|
1359 |
-
"learning_rate": 0.00015559845559845562,
|
1360 |
-
"loss": 1.6538,
|
1361 |
-
"step": 216
|
1362 |
-
},
|
1363 |
-
{
|
1364 |
-
"epoch": 1.03,
|
1365 |
-
"learning_rate": 0.00015521235521235522,
|
1366 |
-
"loss": 1.9162,
|
1367 |
-
"step": 217
|
1368 |
-
},
|
1369 |
-
{
|
1370 |
-
"epoch": 1.03,
|
1371 |
-
"eval_loss": 3.399775981903076,
|
1372 |
-
"eval_runtime": 7.3711,
|
1373 |
-
"eval_samples_per_second": 162.933,
|
1374 |
-
"eval_steps_per_second": 54.401,
|
1375 |
-
"step": 217
|
1376 |
-
},
|
1377 |
-
{
|
1378 |
-
"epoch": 1.04,
|
1379 |
-
"learning_rate": 0.00015482625482625482,
|
1380 |
-
"loss": 1.8293,
|
1381 |
-
"step": 218
|
1382 |
-
},
|
1383 |
-
{
|
1384 |
-
"epoch": 1.04,
|
1385 |
-
"learning_rate": 0.00015444015444015445,
|
1386 |
-
"loss": 1.8539,
|
1387 |
-
"step": 219
|
1388 |
-
},
|
1389 |
-
{
|
1390 |
-
"epoch": 1.05,
|
1391 |
-
"learning_rate": 0.00015405405405405405,
|
1392 |
-
"loss": 1.7888,
|
1393 |
-
"step": 220
|
1394 |
-
},
|
1395 |
-
{
|
1396 |
-
"epoch": 1.05,
|
1397 |
-
"learning_rate": 0.00015366795366795368,
|
1398 |
-
"loss": 1.7813,
|
1399 |
-
"step": 221
|
1400 |
-
},
|
1401 |
-
{
|
1402 |
-
"epoch": 1.06,
|
1403 |
-
"learning_rate": 0.00015328185328185328,
|
1404 |
-
"loss": 1.8911,
|
1405 |
-
"step": 222
|
1406 |
-
},
|
1407 |
-
{
|
1408 |
-
"epoch": 1.06,
|
1409 |
-
"learning_rate": 0.0001528957528957529,
|
1410 |
-
"loss": 1.839,
|
1411 |
-
"step": 223
|
1412 |
-
},
|
1413 |
-
{
|
1414 |
-
"epoch": 1.07,
|
1415 |
-
"learning_rate": 0.0001525096525096525,
|
1416 |
-
"loss": 1.8223,
|
1417 |
-
"step": 224
|
1418 |
-
},
|
1419 |
-
{
|
1420 |
-
"epoch": 1.07,
|
1421 |
-
"learning_rate": 0.00015212355212355214,
|
1422 |
-
"loss": 1.825,
|
1423 |
-
"step": 225
|
1424 |
-
},
|
1425 |
-
{
|
1426 |
-
"epoch": 1.08,
|
1427 |
-
"learning_rate": 0.00015173745173745174,
|
1428 |
-
"loss": 1.7962,
|
1429 |
-
"step": 226
|
1430 |
-
},
|
1431 |
-
{
|
1432 |
-
"epoch": 1.08,
|
1433 |
-
"learning_rate": 0.00015135135135135137,
|
1434 |
-
"loss": 1.8117,
|
1435 |
-
"step": 227
|
1436 |
-
},
|
1437 |
-
{
|
1438 |
-
"epoch": 1.09,
|
1439 |
-
"learning_rate": 0.00015096525096525097,
|
1440 |
-
"loss": 1.9061,
|
1441 |
-
"step": 228
|
1442 |
-
},
|
1443 |
-
{
|
1444 |
-
"epoch": 1.09,
|
1445 |
-
"learning_rate": 0.0001505791505791506,
|
1446 |
-
"loss": 1.8982,
|
1447 |
-
"step": 229
|
1448 |
-
},
|
1449 |
-
{
|
1450 |
-
"epoch": 1.1,
|
1451 |
-
"learning_rate": 0.0001501930501930502,
|
1452 |
-
"loss": 1.9087,
|
1453 |
-
"step": 230
|
1454 |
-
},
|
1455 |
-
{
|
1456 |
-
"epoch": 1.1,
|
1457 |
-
"learning_rate": 0.0001498069498069498,
|
1458 |
-
"loss": 1.9664,
|
1459 |
-
"step": 231
|
1460 |
-
},
|
1461 |
-
{
|
1462 |
-
"epoch": 1.11,
|
1463 |
-
"learning_rate": 0.00014942084942084943,
|
1464 |
-
"loss": 1.7921,
|
1465 |
-
"step": 232
|
1466 |
-
},
|
1467 |
-
{
|
1468 |
-
"epoch": 1.11,
|
1469 |
-
"learning_rate": 0.00014903474903474903,
|
1470 |
-
"loss": 1.9163,
|
1471 |
-
"step": 233
|
1472 |
-
},
|
1473 |
-
{
|
1474 |
-
"epoch": 1.12,
|
1475 |
-
"learning_rate": 0.00014864864864864866,
|
1476 |
-
"loss": 1.8759,
|
1477 |
-
"step": 234
|
1478 |
-
},
|
1479 |
-
{
|
1480 |
-
"epoch": 1.12,
|
1481 |
-
"learning_rate": 0.00014826254826254826,
|
1482 |
-
"loss": 1.9262,
|
1483 |
-
"step": 235
|
1484 |
-
},
|
1485 |
-
{
|
1486 |
-
"epoch": 1.13,
|
1487 |
-
"learning_rate": 0.0001478764478764479,
|
1488 |
-
"loss": 1.9063,
|
1489 |
-
"step": 236
|
1490 |
-
},
|
1491 |
-
{
|
1492 |
-
"epoch": 1.13,
|
1493 |
-
"learning_rate": 0.0001474903474903475,
|
1494 |
-
"loss": 1.8577,
|
1495 |
-
"step": 237
|
1496 |
-
},
|
1497 |
-
{
|
1498 |
-
"epoch": 1.14,
|
1499 |
-
"learning_rate": 0.00014710424710424712,
|
1500 |
-
"loss": 1.7452,
|
1501 |
-
"step": 238
|
1502 |
-
},
|
1503 |
-
{
|
1504 |
-
"epoch": 1.14,
|
1505 |
-
"learning_rate": 0.00014671814671814672,
|
1506 |
-
"loss": 1.9344,
|
1507 |
-
"step": 239
|
1508 |
-
},
|
1509 |
-
{
|
1510 |
-
"epoch": 1.15,
|
1511 |
-
"learning_rate": 0.00014633204633204635,
|
1512 |
-
"loss": 1.7575,
|
1513 |
-
"step": 240
|
1514 |
-
},
|
1515 |
-
{
|
1516 |
-
"epoch": 1.15,
|
1517 |
-
"learning_rate": 0.00014594594594594595,
|
1518 |
-
"loss": 1.7707,
|
1519 |
-
"step": 241
|
1520 |
-
},
|
1521 |
-
{
|
1522 |
-
"epoch": 1.16,
|
1523 |
-
"learning_rate": 0.00014555984555984558,
|
1524 |
-
"loss": 1.8945,
|
1525 |
-
"step": 242
|
1526 |
-
},
|
1527 |
-
{
|
1528 |
-
"epoch": 1.16,
|
1529 |
-
"learning_rate": 0.00014517374517374518,
|
1530 |
-
"loss": 1.8379,
|
1531 |
-
"step": 243
|
1532 |
-
},
|
1533 |
-
{
|
1534 |
-
"epoch": 1.17,
|
1535 |
-
"learning_rate": 0.0001447876447876448,
|
1536 |
-
"loss": 1.9021,
|
1537 |
-
"step": 244
|
1538 |
-
},
|
1539 |
-
{
|
1540 |
-
"epoch": 1.17,
|
1541 |
-
"learning_rate": 0.0001444015444015444,
|
1542 |
-
"loss": 1.844,
|
1543 |
-
"step": 245
|
1544 |
-
},
|
1545 |
-
{
|
1546 |
-
"epoch": 1.17,
|
1547 |
-
"learning_rate": 0.000144015444015444,
|
1548 |
-
"loss": 1.9396,
|
1549 |
-
"step": 246
|
1550 |
-
},
|
1551 |
-
{
|
1552 |
-
"epoch": 1.18,
|
1553 |
-
"learning_rate": 0.00014362934362934364,
|
1554 |
-
"loss": 2.0305,
|
1555 |
-
"step": 247
|
1556 |
-
},
|
1557 |
-
{
|
1558 |
-
"epoch": 1.18,
|
1559 |
-
"learning_rate": 0.00014324324324324324,
|
1560 |
-
"loss": 1.8985,
|
1561 |
-
"step": 248
|
1562 |
-
},
|
1563 |
-
{
|
1564 |
-
"epoch": 1.18,
|
1565 |
-
"eval_loss": 3.330674409866333,
|
1566 |
-
"eval_runtime": 7.364,
|
1567 |
-
"eval_samples_per_second": 163.091,
|
1568 |
-
"eval_steps_per_second": 54.454,
|
1569 |
-
"step": 248
|
1570 |
-
},
|
1571 |
-
{
|
1572 |
-
"epoch": 1.19,
|
1573 |
-
"learning_rate": 0.00014285714285714287,
|
1574 |
-
"loss": 1.8457,
|
1575 |
-
"step": 249
|
1576 |
-
},
|
1577 |
-
{
|
1578 |
-
"epoch": 1.19,
|
1579 |
-
"learning_rate": 0.00014247104247104247,
|
1580 |
-
"loss": 1.8213,
|
1581 |
-
"step": 250
|
1582 |
-
},
|
1583 |
-
{
|
1584 |
-
"epoch": 1.2,
|
1585 |
-
"learning_rate": 0.0001420849420849421,
|
1586 |
-
"loss": 1.7586,
|
1587 |
-
"step": 251
|
1588 |
-
},
|
1589 |
-
{
|
1590 |
-
"epoch": 1.2,
|
1591 |
-
"learning_rate": 0.0001416988416988417,
|
1592 |
-
"loss": 1.8669,
|
1593 |
-
"step": 252
|
1594 |
-
},
|
1595 |
-
{
|
1596 |
-
"epoch": 1.21,
|
1597 |
-
"learning_rate": 0.00014131274131274133,
|
1598 |
-
"loss": 1.9476,
|
1599 |
-
"step": 253
|
1600 |
-
},
|
1601 |
-
{
|
1602 |
-
"epoch": 1.21,
|
1603 |
-
"learning_rate": 0.00014092664092664093,
|
1604 |
-
"loss": 1.8525,
|
1605 |
-
"step": 254
|
1606 |
-
},
|
1607 |
-
{
|
1608 |
-
"epoch": 1.22,
|
1609 |
-
"learning_rate": 0.00014054054054054056,
|
1610 |
-
"loss": 2.0163,
|
1611 |
-
"step": 255
|
1612 |
-
},
|
1613 |
-
{
|
1614 |
-
"epoch": 1.22,
|
1615 |
-
"learning_rate": 0.00014015444015444016,
|
1616 |
-
"loss": 1.9186,
|
1617 |
-
"step": 256
|
1618 |
-
},
|
1619 |
-
{
|
1620 |
-
"epoch": 1.23,
|
1621 |
-
"learning_rate": 0.00013976833976833979,
|
1622 |
-
"loss": 1.9528,
|
1623 |
-
"step": 257
|
1624 |
-
},
|
1625 |
-
{
|
1626 |
-
"epoch": 1.23,
|
1627 |
-
"learning_rate": 0.0001393822393822394,
|
1628 |
-
"loss": 2.2483,
|
1629 |
-
"step": 258
|
1630 |
-
},
|
1631 |
-
{
|
1632 |
-
"epoch": 1.24,
|
1633 |
-
"learning_rate": 0.00013899613899613902,
|
1634 |
-
"loss": 1.8889,
|
1635 |
-
"step": 259
|
1636 |
-
},
|
1637 |
-
{
|
1638 |
-
"epoch": 1.24,
|
1639 |
-
"learning_rate": 0.00013861003861003862,
|
1640 |
-
"loss": 2.0137,
|
1641 |
-
"step": 260
|
1642 |
-
},
|
1643 |
-
{
|
1644 |
-
"epoch": 1.25,
|
1645 |
-
"learning_rate": 0.00013822393822393822,
|
1646 |
-
"loss": 1.9397,
|
1647 |
-
"step": 261
|
1648 |
-
},
|
1649 |
-
{
|
1650 |
-
"epoch": 1.25,
|
1651 |
-
"learning_rate": 0.00013783783783783785,
|
1652 |
-
"loss": 1.8241,
|
1653 |
-
"step": 262
|
1654 |
-
},
|
1655 |
-
{
|
1656 |
-
"epoch": 1.26,
|
1657 |
-
"learning_rate": 0.00013745173745173745,
|
1658 |
-
"loss": 1.9685,
|
1659 |
-
"step": 263
|
1660 |
-
},
|
1661 |
-
{
|
1662 |
-
"epoch": 1.26,
|
1663 |
-
"learning_rate": 0.00013706563706563708,
|
1664 |
-
"loss": 1.9909,
|
1665 |
-
"step": 264
|
1666 |
-
},
|
1667 |
-
{
|
1668 |
-
"epoch": 1.27,
|
1669 |
-
"learning_rate": 0.00013667953667953668,
|
1670 |
-
"loss": 1.8653,
|
1671 |
-
"step": 265
|
1672 |
-
},
|
1673 |
-
{
|
1674 |
-
"epoch": 1.27,
|
1675 |
-
"learning_rate": 0.0001362934362934363,
|
1676 |
-
"loss": 1.9163,
|
1677 |
-
"step": 266
|
1678 |
-
},
|
1679 |
-
{
|
1680 |
-
"epoch": 1.28,
|
1681 |
-
"learning_rate": 0.0001359073359073359,
|
1682 |
-
"loss": 1.9765,
|
1683 |
-
"step": 267
|
1684 |
-
},
|
1685 |
-
{
|
1686 |
-
"epoch": 1.28,
|
1687 |
-
"learning_rate": 0.00013552123552123554,
|
1688 |
-
"loss": 1.788,
|
1689 |
-
"step": 268
|
1690 |
-
},
|
1691 |
-
{
|
1692 |
-
"epoch": 1.29,
|
1693 |
-
"learning_rate": 0.00013513513513513514,
|
1694 |
-
"loss": 1.8103,
|
1695 |
-
"step": 269
|
1696 |
-
},
|
1697 |
-
{
|
1698 |
-
"epoch": 1.29,
|
1699 |
-
"learning_rate": 0.00013474903474903477,
|
1700 |
-
"loss": 2.0086,
|
1701 |
-
"step": 270
|
1702 |
-
},
|
1703 |
-
{
|
1704 |
-
"epoch": 1.3,
|
1705 |
-
"learning_rate": 0.00013436293436293437,
|
1706 |
-
"loss": 1.9448,
|
1707 |
-
"step": 271
|
1708 |
-
},
|
1709 |
-
{
|
1710 |
-
"epoch": 1.3,
|
1711 |
-
"learning_rate": 0.000133976833976834,
|
1712 |
-
"loss": 1.8598,
|
1713 |
-
"step": 272
|
1714 |
-
},
|
1715 |
-
{
|
1716 |
-
"epoch": 1.31,
|
1717 |
-
"learning_rate": 0.0001335907335907336,
|
1718 |
-
"loss": 2.0792,
|
1719 |
-
"step": 273
|
1720 |
-
},
|
1721 |
-
{
|
1722 |
-
"epoch": 1.31,
|
1723 |
-
"learning_rate": 0.0001332046332046332,
|
1724 |
-
"loss": 1.7766,
|
1725 |
-
"step": 274
|
1726 |
-
},
|
1727 |
-
{
|
1728 |
-
"epoch": 1.32,
|
1729 |
-
"learning_rate": 0.00013281853281853283,
|
1730 |
-
"loss": 1.9329,
|
1731 |
-
"step": 275
|
1732 |
-
},
|
1733 |
-
{
|
1734 |
-
"epoch": 1.32,
|
1735 |
-
"learning_rate": 0.00013243243243243243,
|
1736 |
-
"loss": 1.9933,
|
1737 |
-
"step": 276
|
1738 |
-
},
|
1739 |
-
{
|
1740 |
-
"epoch": 1.33,
|
1741 |
-
"learning_rate": 0.00013204633204633206,
|
1742 |
-
"loss": 1.9371,
|
1743 |
-
"step": 277
|
1744 |
-
},
|
1745 |
-
{
|
1746 |
-
"epoch": 1.33,
|
1747 |
-
"learning_rate": 0.00013166023166023166,
|
1748 |
-
"loss": 1.9629,
|
1749 |
-
"step": 278
|
1750 |
-
},
|
1751 |
-
{
|
1752 |
-
"epoch": 1.33,
|
1753 |
-
"learning_rate": 0.00013127413127413129,
|
1754 |
-
"loss": 2.0488,
|
1755 |
-
"step": 279
|
1756 |
-
},
|
1757 |
-
{
|
1758 |
-
"epoch": 1.33,
|
1759 |
-
"eval_loss": 3.333745241165161,
|
1760 |
-
"eval_runtime": 7.361,
|
1761 |
-
"eval_samples_per_second": 163.157,
|
1762 |
-
"eval_steps_per_second": 54.476,
|
1763 |
-
"step": 279
|
1764 |
-
},
|
1765 |
-
{
|
1766 |
-
"epoch": 1.34,
|
1767 |
-
"learning_rate": 0.0001308880308880309,
|
1768 |
-
"loss": 2.0148,
|
1769 |
-
"step": 280
|
1770 |
-
},
|
1771 |
-
{
|
1772 |
-
"epoch": 1.34,
|
1773 |
-
"learning_rate": 0.00013050193050193052,
|
1774 |
-
"loss": 1.8416,
|
1775 |
-
"step": 281
|
1776 |
-
},
|
1777 |
-
{
|
1778 |
-
"epoch": 1.35,
|
1779 |
-
"learning_rate": 0.00013011583011583012,
|
1780 |
-
"loss": 2.1004,
|
1781 |
-
"step": 282
|
1782 |
-
},
|
1783 |
-
{
|
1784 |
-
"epoch": 1.35,
|
1785 |
-
"learning_rate": 0.00012972972972972974,
|
1786 |
-
"loss": 1.8308,
|
1787 |
-
"step": 283
|
1788 |
-
},
|
1789 |
-
{
|
1790 |
-
"epoch": 1.36,
|
1791 |
-
"learning_rate": 0.00012934362934362935,
|
1792 |
-
"loss": 1.9441,
|
1793 |
-
"step": 284
|
1794 |
-
},
|
1795 |
-
{
|
1796 |
-
"epoch": 1.36,
|
1797 |
-
"learning_rate": 0.00012895752895752897,
|
1798 |
-
"loss": 2.083,
|
1799 |
-
"step": 285
|
1800 |
-
},
|
1801 |
-
{
|
1802 |
-
"epoch": 1.37,
|
1803 |
-
"learning_rate": 0.00012857142857142858,
|
1804 |
-
"loss": 1.8198,
|
1805 |
-
"step": 286
|
1806 |
-
},
|
1807 |
-
{
|
1808 |
-
"epoch": 1.37,
|
1809 |
-
"learning_rate": 0.0001281853281853282,
|
1810 |
-
"loss": 2.0069,
|
1811 |
-
"step": 287
|
1812 |
-
},
|
1813 |
-
{
|
1814 |
-
"epoch": 1.38,
|
1815 |
-
"learning_rate": 0.0001277992277992278,
|
1816 |
-
"loss": 2.0146,
|
1817 |
-
"step": 288
|
1818 |
-
},
|
1819 |
-
{
|
1820 |
-
"epoch": 1.38,
|
1821 |
-
"learning_rate": 0.0001274131274131274,
|
1822 |
-
"loss": 1.8554,
|
1823 |
-
"step": 289
|
1824 |
-
},
|
1825 |
-
{
|
1826 |
-
"epoch": 1.39,
|
1827 |
-
"learning_rate": 0.00012702702702702703,
|
1828 |
-
"loss": 1.972,
|
1829 |
-
"step": 290
|
1830 |
-
},
|
1831 |
-
{
|
1832 |
-
"epoch": 1.39,
|
1833 |
-
"learning_rate": 0.00012664092664092664,
|
1834 |
-
"loss": 1.9583,
|
1835 |
-
"step": 291
|
1836 |
-
},
|
1837 |
-
{
|
1838 |
-
"epoch": 1.4,
|
1839 |
-
"learning_rate": 0.00012625482625482626,
|
1840 |
-
"loss": 1.8567,
|
1841 |
-
"step": 292
|
1842 |
-
},
|
1843 |
-
{
|
1844 |
-
"epoch": 1.4,
|
1845 |
-
"learning_rate": 0.00012586872586872587,
|
1846 |
-
"loss": 2.0031,
|
1847 |
-
"step": 293
|
1848 |
-
},
|
1849 |
-
{
|
1850 |
-
"epoch": 1.41,
|
1851 |
-
"learning_rate": 0.0001254826254826255,
|
1852 |
-
"loss": 1.9725,
|
1853 |
-
"step": 294
|
1854 |
-
},
|
1855 |
-
{
|
1856 |
-
"epoch": 1.41,
|
1857 |
-
"learning_rate": 0.0001250965250965251,
|
1858 |
-
"loss": 1.9517,
|
1859 |
-
"step": 295
|
1860 |
-
},
|
1861 |
-
{
|
1862 |
-
"epoch": 1.42,
|
1863 |
-
"learning_rate": 0.00012471042471042472,
|
1864 |
-
"loss": 1.7436,
|
1865 |
-
"step": 296
|
1866 |
-
},
|
1867 |
-
{
|
1868 |
-
"epoch": 1.42,
|
1869 |
-
"learning_rate": 0.00012432432432432433,
|
1870 |
-
"loss": 1.9968,
|
1871 |
-
"step": 297
|
1872 |
-
},
|
1873 |
-
{
|
1874 |
-
"epoch": 1.43,
|
1875 |
-
"learning_rate": 0.00012393822393822395,
|
1876 |
-
"loss": 1.8299,
|
1877 |
-
"step": 298
|
1878 |
-
},
|
1879 |
-
{
|
1880 |
-
"epoch": 1.43,
|
1881 |
-
"learning_rate": 0.00012355212355212355,
|
1882 |
-
"loss": 2.1024,
|
1883 |
-
"step": 299
|
1884 |
-
},
|
1885 |
-
{
|
1886 |
-
"epoch": 1.44,
|
1887 |
-
"learning_rate": 0.00012316602316602318,
|
1888 |
-
"loss": 1.8099,
|
1889 |
-
"step": 300
|
1890 |
-
},
|
1891 |
-
{
|
1892 |
-
"epoch": 1.44,
|
1893 |
-
"learning_rate": 0.00012277992277992278,
|
1894 |
-
"loss": 1.9761,
|
1895 |
-
"step": 301
|
1896 |
-
},
|
1897 |
-
{
|
1898 |
-
"epoch": 1.45,
|
1899 |
-
"learning_rate": 0.0001223938223938224,
|
1900 |
-
"loss": 2.1201,
|
1901 |
-
"step": 302
|
1902 |
-
},
|
1903 |
-
{
|
1904 |
-
"epoch": 1.45,
|
1905 |
-
"learning_rate": 0.00012200772200772201,
|
1906 |
-
"loss": 1.9268,
|
1907 |
-
"step": 303
|
1908 |
-
},
|
1909 |
-
{
|
1910 |
-
"epoch": 1.46,
|
1911 |
-
"learning_rate": 0.00012162162162162163,
|
1912 |
-
"loss": 1.8136,
|
1913 |
-
"step": 304
|
1914 |
-
},
|
1915 |
-
{
|
1916 |
-
"epoch": 1.46,
|
1917 |
-
"learning_rate": 0.00012123552123552124,
|
1918 |
-
"loss": 2.0362,
|
1919 |
-
"step": 305
|
1920 |
-
},
|
1921 |
-
{
|
1922 |
-
"epoch": 1.47,
|
1923 |
-
"learning_rate": 0.00012084942084942086,
|
1924 |
-
"loss": 2.0653,
|
1925 |
-
"step": 306
|
1926 |
-
},
|
1927 |
-
{
|
1928 |
-
"epoch": 1.47,
|
1929 |
-
"learning_rate": 0.00012046332046332047,
|
1930 |
-
"loss": 2.022,
|
1931 |
-
"step": 307
|
1932 |
-
},
|
1933 |
-
{
|
1934 |
-
"epoch": 1.48,
|
1935 |
-
"learning_rate": 0.00012007722007722009,
|
1936 |
-
"loss": 1.9317,
|
1937 |
-
"step": 308
|
1938 |
-
},
|
1939 |
-
{
|
1940 |
-
"epoch": 1.48,
|
1941 |
-
"learning_rate": 0.0001196911196911197,
|
1942 |
-
"loss": 2.0455,
|
1943 |
-
"step": 309
|
1944 |
-
},
|
1945 |
-
{
|
1946 |
-
"epoch": 1.49,
|
1947 |
-
"learning_rate": 0.00011930501930501932,
|
1948 |
-
"loss": 2.0812,
|
1949 |
-
"step": 310
|
1950 |
-
},
|
1951 |
-
{
|
1952 |
-
"epoch": 1.49,
|
1953 |
-
"eval_loss": 3.341298818588257,
|
1954 |
-
"eval_runtime": 7.3644,
|
1955 |
-
"eval_samples_per_second": 163.081,
|
1956 |
-
"eval_steps_per_second": 54.451,
|
1957 |
-
"step": 310
|
1958 |
-
},
|
1959 |
-
{
|
1960 |
-
"epoch": 1.49,
|
1961 |
-
"learning_rate": 0.00011891891891891893,
|
1962 |
-
"loss": 2.0609,
|
1963 |
-
"step": 311
|
1964 |
-
},
|
1965 |
-
{
|
1966 |
-
"epoch": 1.5,
|
1967 |
-
"learning_rate": 0.00011853281853281855,
|
1968 |
-
"loss": 1.9708,
|
1969 |
-
"step": 312
|
1970 |
-
},
|
1971 |
-
{
|
1972 |
-
"epoch": 1.5,
|
1973 |
-
"learning_rate": 0.00011814671814671816,
|
1974 |
-
"loss": 1.9968,
|
1975 |
-
"step": 313
|
1976 |
-
},
|
1977 |
-
{
|
1978 |
-
"epoch": 1.5,
|
1979 |
-
"learning_rate": 0.00011776061776061778,
|
1980 |
-
"loss": 2.0283,
|
1981 |
-
"step": 314
|
1982 |
-
},
|
1983 |
-
{
|
1984 |
-
"epoch": 1.51,
|
1985 |
-
"learning_rate": 0.00011737451737451739,
|
1986 |
-
"loss": 2.0142,
|
1987 |
-
"step": 315
|
1988 |
-
},
|
1989 |
-
{
|
1990 |
-
"epoch": 1.51,
|
1991 |
-
"learning_rate": 0.00011698841698841701,
|
1992 |
-
"loss": 2.026,
|
1993 |
-
"step": 316
|
1994 |
-
},
|
1995 |
-
{
|
1996 |
-
"epoch": 1.52,
|
1997 |
-
"learning_rate": 0.0001166023166023166,
|
1998 |
-
"loss": 2.1965,
|
1999 |
-
"step": 317
|
2000 |
-
},
|
2001 |
-
{
|
2002 |
-
"epoch": 1.52,
|
2003 |
-
"learning_rate": 0.00011621621621621621,
|
2004 |
-
"loss": 1.984,
|
2005 |
-
"step": 318
|
2006 |
-
},
|
2007 |
-
{
|
2008 |
-
"epoch": 1.53,
|
2009 |
-
"learning_rate": 0.00011583011583011582,
|
2010 |
-
"loss": 2.0699,
|
2011 |
-
"step": 319
|
2012 |
-
},
|
2013 |
-
{
|
2014 |
-
"epoch": 1.53,
|
2015 |
-
"learning_rate": 0.00011544401544401544,
|
2016 |
-
"loss": 1.864,
|
2017 |
-
"step": 320
|
2018 |
-
},
|
2019 |
-
{
|
2020 |
-
"epoch": 1.54,
|
2021 |
-
"learning_rate": 0.00011505791505791505,
|
2022 |
-
"loss": 2.0219,
|
2023 |
-
"step": 321
|
2024 |
-
},
|
2025 |
-
{
|
2026 |
-
"epoch": 1.54,
|
2027 |
-
"learning_rate": 0.00011467181467181467,
|
2028 |
-
"loss": 1.9162,
|
2029 |
-
"step": 322
|
2030 |
-
},
|
2031 |
-
{
|
2032 |
-
"epoch": 1.55,
|
2033 |
-
"learning_rate": 0.00011428571428571428,
|
2034 |
-
"loss": 1.9092,
|
2035 |
-
"step": 323
|
2036 |
-
},
|
2037 |
-
{
|
2038 |
-
"epoch": 1.55,
|
2039 |
-
"learning_rate": 0.0001138996138996139,
|
2040 |
-
"loss": 2.0932,
|
2041 |
-
"step": 324
|
2042 |
-
},
|
2043 |
-
{
|
2044 |
-
"epoch": 1.56,
|
2045 |
-
"learning_rate": 0.00011351351351351351,
|
2046 |
-
"loss": 2.0975,
|
2047 |
-
"step": 325
|
2048 |
-
},
|
2049 |
-
{
|
2050 |
-
"epoch": 1.56,
|
2051 |
-
"learning_rate": 0.00011312741312741313,
|
2052 |
-
"loss": 2.1674,
|
2053 |
-
"step": 326
|
2054 |
-
},
|
2055 |
-
{
|
2056 |
-
"epoch": 1.57,
|
2057 |
-
"learning_rate": 0.00011274131274131274,
|
2058 |
-
"loss": 1.8444,
|
2059 |
-
"step": 327
|
2060 |
-
},
|
2061 |
-
{
|
2062 |
-
"epoch": 1.57,
|
2063 |
-
"learning_rate": 0.00011235521235521236,
|
2064 |
-
"loss": 1.9696,
|
2065 |
-
"step": 328
|
2066 |
-
},
|
2067 |
-
{
|
2068 |
-
"epoch": 1.58,
|
2069 |
-
"learning_rate": 0.00011196911196911197,
|
2070 |
-
"loss": 1.943,
|
2071 |
-
"step": 329
|
2072 |
-
},
|
2073 |
-
{
|
2074 |
-
"epoch": 1.58,
|
2075 |
-
"learning_rate": 0.00011158301158301159,
|
2076 |
-
"loss": 2.1044,
|
2077 |
-
"step": 330
|
2078 |
-
},
|
2079 |
-
{
|
2080 |
-
"epoch": 1.59,
|
2081 |
-
"learning_rate": 0.0001111969111969112,
|
2082 |
-
"loss": 2.2068,
|
2083 |
-
"step": 331
|
2084 |
-
},
|
2085 |
-
{
|
2086 |
-
"epoch": 1.59,
|
2087 |
-
"learning_rate": 0.00011081081081081082,
|
2088 |
-
"loss": 2.0958,
|
2089 |
-
"step": 332
|
2090 |
-
},
|
2091 |
-
{
|
2092 |
-
"epoch": 1.6,
|
2093 |
-
"learning_rate": 0.00011042471042471043,
|
2094 |
-
"loss": 1.9789,
|
2095 |
-
"step": 333
|
2096 |
-
},
|
2097 |
-
{
|
2098 |
-
"epoch": 1.6,
|
2099 |
-
"learning_rate": 0.00011003861003861005,
|
2100 |
-
"loss": 1.8663,
|
2101 |
-
"step": 334
|
2102 |
-
},
|
2103 |
-
{
|
2104 |
-
"epoch": 1.61,
|
2105 |
-
"learning_rate": 0.00010965250965250966,
|
2106 |
-
"loss": 2.0499,
|
2107 |
-
"step": 335
|
2108 |
-
},
|
2109 |
-
{
|
2110 |
-
"epoch": 1.61,
|
2111 |
-
"learning_rate": 0.00010926640926640928,
|
2112 |
-
"loss": 1.935,
|
2113 |
-
"step": 336
|
2114 |
-
},
|
2115 |
-
{
|
2116 |
-
"epoch": 1.62,
|
2117 |
-
"learning_rate": 0.00010888030888030889,
|
2118 |
-
"loss": 2.0021,
|
2119 |
-
"step": 337
|
2120 |
-
},
|
2121 |
-
{
|
2122 |
-
"epoch": 1.62,
|
2123 |
-
"learning_rate": 0.0001084942084942085,
|
2124 |
-
"loss": 1.953,
|
2125 |
-
"step": 338
|
2126 |
-
},
|
2127 |
-
{
|
2128 |
-
"epoch": 1.63,
|
2129 |
-
"learning_rate": 0.00010810810810810812,
|
2130 |
-
"loss": 2.0466,
|
2131 |
-
"step": 339
|
2132 |
-
},
|
2133 |
-
{
|
2134 |
-
"epoch": 1.63,
|
2135 |
-
"learning_rate": 0.00010772200772200774,
|
2136 |
-
"loss": 1.9709,
|
2137 |
-
"step": 340
|
2138 |
-
},
|
2139 |
-
{
|
2140 |
-
"epoch": 1.64,
|
2141 |
-
"learning_rate": 0.00010733590733590735,
|
2142 |
-
"loss": 1.8884,
|
2143 |
-
"step": 341
|
2144 |
-
},
|
2145 |
-
{
|
2146 |
-
"epoch": 1.64,
|
2147 |
-
"eval_loss": 3.323758602142334,
|
2148 |
-
"eval_runtime": 7.3665,
|
2149 |
-
"eval_samples_per_second": 163.036,
|
2150 |
-
"eval_steps_per_second": 54.436,
|
2151 |
-
"step": 341
|
2152 |
-
},
|
2153 |
-
{
|
2154 |
-
"epoch": 1.64,
|
2155 |
-
"learning_rate": 0.00010694980694980697,
|
2156 |
-
"loss": 2.0557,
|
2157 |
-
"step": 342
|
2158 |
-
},
|
2159 |
-
{
|
2160 |
-
"epoch": 1.65,
|
2161 |
-
"learning_rate": 0.00010656370656370658,
|
2162 |
-
"loss": 2.0345,
|
2163 |
-
"step": 343
|
2164 |
-
},
|
2165 |
-
{
|
2166 |
-
"epoch": 1.65,
|
2167 |
-
"learning_rate": 0.0001061776061776062,
|
2168 |
-
"loss": 1.8173,
|
2169 |
-
"step": 344
|
2170 |
-
},
|
2171 |
-
{
|
2172 |
-
"epoch": 1.66,
|
2173 |
-
"learning_rate": 0.00010579150579150581,
|
2174 |
-
"loss": 1.9598,
|
2175 |
-
"step": 345
|
2176 |
-
},
|
2177 |
-
{
|
2178 |
-
"epoch": 1.66,
|
2179 |
-
"learning_rate": 0.0001054054054054054,
|
2180 |
-
"loss": 2.0323,
|
2181 |
-
"step": 346
|
2182 |
-
},
|
2183 |
-
{
|
2184 |
-
"epoch": 1.67,
|
2185 |
-
"learning_rate": 0.00010501930501930501,
|
2186 |
-
"loss": 1.9284,
|
2187 |
-
"step": 347
|
2188 |
-
},
|
2189 |
-
{
|
2190 |
-
"epoch": 1.67,
|
2191 |
-
"learning_rate": 0.00010463320463320463,
|
2192 |
-
"loss": 2.1235,
|
2193 |
-
"step": 348
|
2194 |
-
},
|
2195 |
-
{
|
2196 |
-
"epoch": 1.67,
|
2197 |
-
"learning_rate": 0.00010424710424710424,
|
2198 |
-
"loss": 1.9426,
|
2199 |
-
"step": 349
|
2200 |
-
},
|
2201 |
-
{
|
2202 |
-
"epoch": 1.68,
|
2203 |
-
"learning_rate": 0.00010386100386100386,
|
2204 |
-
"loss": 1.8692,
|
2205 |
-
"step": 350
|
2206 |
-
},
|
2207 |
-
{
|
2208 |
-
"epoch": 1.68,
|
2209 |
-
"learning_rate": 0.00010347490347490347,
|
2210 |
-
"loss": 1.9559,
|
2211 |
-
"step": 351
|
2212 |
-
},
|
2213 |
-
{
|
2214 |
-
"epoch": 1.69,
|
2215 |
-
"learning_rate": 0.00010308880308880309,
|
2216 |
-
"loss": 2.0407,
|
2217 |
-
"step": 352
|
2218 |
-
},
|
2219 |
-
{
|
2220 |
-
"epoch": 1.69,
|
2221 |
-
"learning_rate": 0.0001027027027027027,
|
2222 |
-
"loss": 1.9356,
|
2223 |
-
"step": 353
|
2224 |
-
},
|
2225 |
-
{
|
2226 |
-
"epoch": 1.7,
|
2227 |
-
"learning_rate": 0.00010231660231660232,
|
2228 |
-
"loss": 1.9055,
|
2229 |
-
"step": 354
|
2230 |
-
},
|
2231 |
-
{
|
2232 |
-
"epoch": 1.7,
|
2233 |
-
"learning_rate": 0.00010193050193050193,
|
2234 |
-
"loss": 1.9776,
|
2235 |
-
"step": 355
|
2236 |
-
},
|
2237 |
-
{
|
2238 |
-
"epoch": 1.71,
|
2239 |
-
"learning_rate": 0.00010154440154440155,
|
2240 |
-
"loss": 1.8996,
|
2241 |
-
"step": 356
|
2242 |
-
},
|
2243 |
-
{
|
2244 |
-
"epoch": 1.71,
|
2245 |
-
"learning_rate": 0.00010115830115830116,
|
2246 |
-
"loss": 1.8893,
|
2247 |
-
"step": 357
|
2248 |
-
},
|
2249 |
-
{
|
2250 |
-
"epoch": 1.72,
|
2251 |
-
"learning_rate": 0.00010077220077220078,
|
2252 |
-
"loss": 1.9621,
|
2253 |
-
"step": 358
|
2254 |
-
},
|
2255 |
-
{
|
2256 |
-
"epoch": 1.72,
|
2257 |
-
"learning_rate": 0.00010038610038610039,
|
2258 |
-
"loss": 1.9447,
|
2259 |
-
"step": 359
|
2260 |
-
},
|
2261 |
-
{
|
2262 |
-
"epoch": 1.73,
|
2263 |
-
"learning_rate": 0.0001,
|
2264 |
-
"loss": 1.9646,
|
2265 |
-
"step": 360
|
2266 |
-
},
|
2267 |
-
{
|
2268 |
-
"epoch": 1.73,
|
2269 |
-
"learning_rate": 9.961389961389962e-05,
|
2270 |
-
"loss": 1.9459,
|
2271 |
-
"step": 361
|
2272 |
-
},
|
2273 |
-
{
|
2274 |
-
"epoch": 1.74,
|
2275 |
-
"learning_rate": 9.922779922779923e-05,
|
2276 |
-
"loss": 2.0168,
|
2277 |
-
"step": 362
|
2278 |
-
},
|
2279 |
-
{
|
2280 |
-
"epoch": 1.74,
|
2281 |
-
"learning_rate": 9.884169884169885e-05,
|
2282 |
-
"loss": 2.0021,
|
2283 |
-
"step": 363
|
2284 |
-
},
|
2285 |
-
{
|
2286 |
-
"epoch": 1.75,
|
2287 |
-
"learning_rate": 9.845559845559846e-05,
|
2288 |
-
"loss": 1.7642,
|
2289 |
-
"step": 364
|
2290 |
-
},
|
2291 |
-
{
|
2292 |
-
"epoch": 1.75,
|
2293 |
-
"learning_rate": 9.806949806949808e-05,
|
2294 |
-
"loss": 2.0138,
|
2295 |
-
"step": 365
|
2296 |
-
},
|
2297 |
-
{
|
2298 |
-
"epoch": 1.76,
|
2299 |
-
"learning_rate": 9.76833976833977e-05,
|
2300 |
-
"loss": 2.0108,
|
2301 |
-
"step": 366
|
2302 |
-
},
|
2303 |
-
{
|
2304 |
-
"epoch": 1.76,
|
2305 |
-
"learning_rate": 9.729729729729731e-05,
|
2306 |
-
"loss": 2.0955,
|
2307 |
-
"step": 367
|
2308 |
-
},
|
2309 |
-
{
|
2310 |
-
"epoch": 1.77,
|
2311 |
-
"learning_rate": 9.691119691119691e-05,
|
2312 |
-
"loss": 2.1705,
|
2313 |
-
"step": 368
|
2314 |
-
},
|
2315 |
-
{
|
2316 |
-
"epoch": 1.77,
|
2317 |
-
"learning_rate": 9.652509652509652e-05,
|
2318 |
-
"loss": 1.8494,
|
2319 |
-
"step": 369
|
2320 |
-
},
|
2321 |
-
{
|
2322 |
-
"epoch": 1.78,
|
2323 |
-
"learning_rate": 9.613899613899614e-05,
|
2324 |
-
"loss": 1.8676,
|
2325 |
-
"step": 370
|
2326 |
-
},
|
2327 |
-
{
|
2328 |
-
"epoch": 1.78,
|
2329 |
-
"learning_rate": 9.575289575289575e-05,
|
2330 |
-
"loss": 1.821,
|
2331 |
-
"step": 371
|
2332 |
-
},
|
2333 |
-
{
|
2334 |
-
"epoch": 1.79,
|
2335 |
-
"learning_rate": 9.536679536679537e-05,
|
2336 |
-
"loss": 2.0281,
|
2337 |
-
"step": 372
|
2338 |
-
},
|
2339 |
-
{
|
2340 |
-
"epoch": 1.79,
|
2341 |
-
"eval_loss": 3.2718801498413086,
|
2342 |
-
"eval_runtime": 7.3652,
|
2343 |
-
"eval_samples_per_second": 163.063,
|
2344 |
-
"eval_steps_per_second": 54.445,
|
2345 |
-
"step": 372
|
2346 |
-
},
|
2347 |
-
{
|
2348 |
-
"epoch": 1.79,
|
2349 |
-
"learning_rate": 9.498069498069498e-05,
|
2350 |
-
"loss": 2.1556,
|
2351 |
-
"step": 373
|
2352 |
-
},
|
2353 |
-
{
|
2354 |
-
"epoch": 1.8,
|
2355 |
-
"learning_rate": 9.45945945945946e-05,
|
2356 |
-
"loss": 1.9643,
|
2357 |
-
"step": 374
|
2358 |
-
},
|
2359 |
-
{
|
2360 |
-
"epoch": 1.8,
|
2361 |
-
"learning_rate": 9.420849420849421e-05,
|
2362 |
-
"loss": 2.0287,
|
2363 |
-
"step": 375
|
2364 |
-
},
|
2365 |
-
{
|
2366 |
-
"epoch": 1.81,
|
2367 |
-
"learning_rate": 9.382239382239383e-05,
|
2368 |
-
"loss": 1.927,
|
2369 |
-
"step": 376
|
2370 |
-
},
|
2371 |
-
{
|
2372 |
-
"epoch": 1.81,
|
2373 |
-
"learning_rate": 9.343629343629344e-05,
|
2374 |
-
"loss": 1.9838,
|
2375 |
-
"step": 377
|
2376 |
-
},
|
2377 |
-
{
|
2378 |
-
"epoch": 1.82,
|
2379 |
-
"learning_rate": 9.305019305019306e-05,
|
2380 |
-
"loss": 1.9065,
|
2381 |
-
"step": 378
|
2382 |
-
},
|
2383 |
-
{
|
2384 |
-
"epoch": 1.82,
|
2385 |
-
"learning_rate": 9.266409266409267e-05,
|
2386 |
-
"loss": 2.056,
|
2387 |
-
"step": 379
|
2388 |
-
},
|
2389 |
-
{
|
2390 |
-
"epoch": 1.83,
|
2391 |
-
"learning_rate": 9.227799227799229e-05,
|
2392 |
-
"loss": 1.9277,
|
2393 |
-
"step": 380
|
2394 |
-
},
|
2395 |
-
{
|
2396 |
-
"epoch": 1.83,
|
2397 |
-
"learning_rate": 9.18918918918919e-05,
|
2398 |
-
"loss": 1.7797,
|
2399 |
-
"step": 381
|
2400 |
-
},
|
2401 |
-
{
|
2402 |
-
"epoch": 1.83,
|
2403 |
-
"learning_rate": 9.15057915057915e-05,
|
2404 |
-
"loss": 1.8818,
|
2405 |
-
"step": 382
|
2406 |
-
},
|
2407 |
-
{
|
2408 |
-
"epoch": 1.84,
|
2409 |
-
"learning_rate": 9.111969111969112e-05,
|
2410 |
-
"loss": 1.947,
|
2411 |
-
"step": 383
|
2412 |
-
},
|
2413 |
-
{
|
2414 |
-
"epoch": 1.84,
|
2415 |
-
"learning_rate": 9.073359073359073e-05,
|
2416 |
-
"loss": 1.942,
|
2417 |
-
"step": 384
|
2418 |
-
},
|
2419 |
-
{
|
2420 |
-
"epoch": 1.85,
|
2421 |
-
"learning_rate": 9.034749034749035e-05,
|
2422 |
-
"loss": 1.9998,
|
2423 |
-
"step": 385
|
2424 |
-
},
|
2425 |
-
{
|
2426 |
-
"epoch": 1.85,
|
2427 |
-
"learning_rate": 8.996138996138996e-05,
|
2428 |
-
"loss": 1.8805,
|
2429 |
-
"step": 386
|
2430 |
-
},
|
2431 |
-
{
|
2432 |
-
"epoch": 1.86,
|
2433 |
-
"learning_rate": 8.957528957528958e-05,
|
2434 |
-
"loss": 1.8903,
|
2435 |
-
"step": 387
|
2436 |
-
},
|
2437 |
-
{
|
2438 |
-
"epoch": 1.86,
|
2439 |
-
"learning_rate": 8.918918918918919e-05,
|
2440 |
-
"loss": 1.9189,
|
2441 |
-
"step": 388
|
2442 |
-
},
|
2443 |
-
{
|
2444 |
-
"epoch": 1.87,
|
2445 |
-
"learning_rate": 8.880308880308881e-05,
|
2446 |
-
"loss": 2.0308,
|
2447 |
-
"step": 389
|
2448 |
-
},
|
2449 |
-
{
|
2450 |
-
"epoch": 1.87,
|
2451 |
-
"learning_rate": 8.841698841698842e-05,
|
2452 |
-
"loss": 2.0768,
|
2453 |
-
"step": 390
|
2454 |
-
},
|
2455 |
-
{
|
2456 |
-
"epoch": 1.88,
|
2457 |
-
"learning_rate": 8.803088803088804e-05,
|
2458 |
-
"loss": 1.9168,
|
2459 |
-
"step": 391
|
2460 |
-
},
|
2461 |
-
{
|
2462 |
-
"epoch": 1.88,
|
2463 |
-
"learning_rate": 8.764478764478765e-05,
|
2464 |
-
"loss": 1.8967,
|
2465 |
-
"step": 392
|
2466 |
-
},
|
2467 |
-
{
|
2468 |
-
"epoch": 1.89,
|
2469 |
-
"learning_rate": 8.725868725868727e-05,
|
2470 |
-
"loss": 1.9347,
|
2471 |
-
"step": 393
|
2472 |
-
},
|
2473 |
-
{
|
2474 |
-
"epoch": 1.89,
|
2475 |
-
"learning_rate": 8.687258687258688e-05,
|
2476 |
-
"loss": 1.8273,
|
2477 |
-
"step": 394
|
2478 |
-
},
|
2479 |
-
{
|
2480 |
-
"epoch": 1.9,
|
2481 |
-
"learning_rate": 8.64864864864865e-05,
|
2482 |
-
"loss": 1.9801,
|
2483 |
-
"step": 395
|
2484 |
-
},
|
2485 |
-
{
|
2486 |
-
"epoch": 1.9,
|
2487 |
-
"learning_rate": 8.61003861003861e-05,
|
2488 |
-
"loss": 2.0002,
|
2489 |
-
"step": 396
|
2490 |
-
},
|
2491 |
-
{
|
2492 |
-
"epoch": 1.91,
|
2493 |
-
"learning_rate": 8.571428571428571e-05,
|
2494 |
-
"loss": 2.0318,
|
2495 |
-
"step": 397
|
2496 |
-
},
|
2497 |
-
{
|
2498 |
-
"epoch": 1.91,
|
2499 |
-
"learning_rate": 8.532818532818533e-05,
|
2500 |
-
"loss": 1.8399,
|
2501 |
-
"step": 398
|
2502 |
-
},
|
2503 |
-
{
|
2504 |
-
"epoch": 1.92,
|
2505 |
-
"learning_rate": 8.494208494208494e-05,
|
2506 |
-
"loss": 1.8956,
|
2507 |
-
"step": 399
|
2508 |
-
},
|
2509 |
-
{
|
2510 |
-
"epoch": 1.92,
|
2511 |
-
"learning_rate": 8.455598455598456e-05,
|
2512 |
-
"loss": 2.0156,
|
2513 |
-
"step": 400
|
2514 |
-
},
|
2515 |
-
{
|
2516 |
-
"epoch": 1.93,
|
2517 |
-
"learning_rate": 8.416988416988417e-05,
|
2518 |
-
"loss": 1.9499,
|
2519 |
-
"step": 401
|
2520 |
-
},
|
2521 |
-
{
|
2522 |
-
"epoch": 1.93,
|
2523 |
-
"learning_rate": 8.378378378378379e-05,
|
2524 |
-
"loss": 1.8823,
|
2525 |
-
"step": 402
|
2526 |
-
},
|
2527 |
-
{
|
2528 |
-
"epoch": 1.94,
|
2529 |
-
"learning_rate": 8.33976833976834e-05,
|
2530 |
-
"loss": 2.1344,
|
2531 |
-
"step": 403
|
2532 |
-
},
|
2533 |
-
{
|
2534 |
-
"epoch": 1.94,
|
2535 |
-
"eval_loss": 3.2487306594848633,
|
2536 |
-
"eval_runtime": 7.3645,
|
2537 |
-
"eval_samples_per_second": 163.08,
|
2538 |
-
"eval_steps_per_second": 54.451,
|
2539 |
-
"step": 403
|
2540 |
-
},
|
2541 |
-
{
|
2542 |
-
"epoch": 1.94,
|
2543 |
-
"learning_rate": 8.301158301158302e-05,
|
2544 |
-
"loss": 1.9887,
|
2545 |
-
"step": 404
|
2546 |
-
},
|
2547 |
-
{
|
2548 |
-
"epoch": 1.95,
|
2549 |
-
"learning_rate": 8.262548262548263e-05,
|
2550 |
-
"loss": 2.0445,
|
2551 |
-
"step": 405
|
2552 |
-
},
|
2553 |
-
{
|
2554 |
-
"epoch": 1.95,
|
2555 |
-
"learning_rate": 8.223938223938225e-05,
|
2556 |
-
"loss": 1.8847,
|
2557 |
-
"step": 406
|
2558 |
-
},
|
2559 |
-
{
|
2560 |
-
"epoch": 1.96,
|
2561 |
-
"learning_rate": 8.185328185328186e-05,
|
2562 |
-
"loss": 1.8461,
|
2563 |
-
"step": 407
|
2564 |
-
},
|
2565 |
-
{
|
2566 |
-
"epoch": 1.96,
|
2567 |
-
"learning_rate": 8.146718146718148e-05,
|
2568 |
-
"loss": 1.9106,
|
2569 |
-
"step": 408
|
2570 |
-
},
|
2571 |
-
{
|
2572 |
-
"epoch": 1.97,
|
2573 |
-
"learning_rate": 8.108108108108109e-05,
|
2574 |
-
"loss": 2.0067,
|
2575 |
-
"step": 409
|
2576 |
-
},
|
2577 |
-
{
|
2578 |
-
"epoch": 1.97,
|
2579 |
-
"learning_rate": 8.06949806949807e-05,
|
2580 |
-
"loss": 1.9705,
|
2581 |
-
"step": 410
|
2582 |
-
},
|
2583 |
-
{
|
2584 |
-
"epoch": 1.98,
|
2585 |
-
"learning_rate": 8.03088803088803e-05,
|
2586 |
-
"loss": 1.8092,
|
2587 |
-
"step": 411
|
2588 |
-
},
|
2589 |
-
{
|
2590 |
-
"epoch": 1.98,
|
2591 |
-
"learning_rate": 7.992277992277992e-05,
|
2592 |
-
"loss": 1.8563,
|
2593 |
-
"step": 412
|
2594 |
-
},
|
2595 |
-
{
|
2596 |
-
"epoch": 1.99,
|
2597 |
-
"learning_rate": 7.953667953667954e-05,
|
2598 |
-
"loss": 1.8833,
|
2599 |
-
"step": 413
|
2600 |
-
},
|
2601 |
-
{
|
2602 |
-
"epoch": 1.99,
|
2603 |
-
"learning_rate": 7.915057915057915e-05,
|
2604 |
-
"loss": 1.9905,
|
2605 |
-
"step": 414
|
2606 |
-
},
|
2607 |
-
{
|
2608 |
-
"epoch": 2.0,
|
2609 |
-
"learning_rate": 7.876447876447877e-05,
|
2610 |
-
"loss": 2.0448,
|
2611 |
-
"step": 415
|
2612 |
-
},
|
2613 |
-
{
|
2614 |
-
"epoch": 2.0,
|
2615 |
-
"learning_rate": 7.837837837837838e-05,
|
2616 |
-
"loss": 1.9066,
|
2617 |
-
"step": 416
|
2618 |
-
},
|
2619 |
-
{
|
2620 |
-
"epoch": 2.0,
|
2621 |
-
"learning_rate": 7.7992277992278e-05,
|
2622 |
-
"loss": 1.8585,
|
2623 |
-
"step": 417
|
2624 |
-
},
|
2625 |
-
{
|
2626 |
-
"epoch": 2.01,
|
2627 |
-
"learning_rate": 7.760617760617761e-05,
|
2628 |
-
"loss": 2.0163,
|
2629 |
-
"step": 418
|
2630 |
-
},
|
2631 |
-
{
|
2632 |
-
"epoch": 2.01,
|
2633 |
-
"learning_rate": 7.722007722007723e-05,
|
2634 |
-
"loss": 1.8571,
|
2635 |
-
"step": 419
|
2636 |
-
},
|
2637 |
-
{
|
2638 |
-
"epoch": 2.02,
|
2639 |
-
"learning_rate": 7.683397683397684e-05,
|
2640 |
-
"loss": 2.0083,
|
2641 |
-
"step": 420
|
2642 |
-
},
|
2643 |
-
{
|
2644 |
-
"epoch": 2.0,
|
2645 |
-
"learning_rate": 7.644787644787645e-05,
|
2646 |
-
"loss": 0.6158,
|
2647 |
-
"step": 421
|
2648 |
-
},
|
2649 |
-
{
|
2650 |
-
"epoch": 2.01,
|
2651 |
-
"learning_rate": 7.606177606177607e-05,
|
2652 |
-
"loss": 0.7386,
|
2653 |
-
"step": 422
|
2654 |
-
},
|
2655 |
-
{
|
2656 |
-
"epoch": 2.01,
|
2657 |
-
"learning_rate": 7.567567567567568e-05,
|
2658 |
-
"loss": 0.7067,
|
2659 |
-
"step": 423
|
2660 |
-
},
|
2661 |
-
{
|
2662 |
-
"epoch": 2.02,
|
2663 |
-
"learning_rate": 7.52895752895753e-05,
|
2664 |
-
"loss": 0.6173,
|
2665 |
-
"step": 424
|
2666 |
-
},
|
2667 |
-
{
|
2668 |
-
"epoch": 2.02,
|
2669 |
-
"learning_rate": 7.49034749034749e-05,
|
2670 |
-
"loss": 0.5876,
|
2671 |
-
"step": 425
|
2672 |
-
},
|
2673 |
-
{
|
2674 |
-
"epoch": 2.03,
|
2675 |
-
"learning_rate": 7.451737451737452e-05,
|
2676 |
-
"loss": 0.5948,
|
2677 |
-
"step": 426
|
2678 |
-
},
|
2679 |
-
{
|
2680 |
-
"epoch": 2.03,
|
2681 |
-
"learning_rate": 7.413127413127413e-05,
|
2682 |
-
"loss": 0.5593,
|
2683 |
-
"step": 427
|
2684 |
-
},
|
2685 |
-
{
|
2686 |
-
"epoch": 2.04,
|
2687 |
-
"learning_rate": 7.374517374517374e-05,
|
2688 |
-
"loss": 0.5989,
|
2689 |
-
"step": 428
|
2690 |
-
},
|
2691 |
-
{
|
2692 |
-
"epoch": 2.04,
|
2693 |
-
"learning_rate": 7.335907335907336e-05,
|
2694 |
-
"loss": 0.5699,
|
2695 |
-
"step": 429
|
2696 |
-
},
|
2697 |
-
{
|
2698 |
-
"epoch": 2.05,
|
2699 |
-
"learning_rate": 7.297297297297297e-05,
|
2700 |
-
"loss": 0.5719,
|
2701 |
-
"step": 430
|
2702 |
-
},
|
2703 |
-
{
|
2704 |
-
"epoch": 2.05,
|
2705 |
-
"learning_rate": 7.258687258687259e-05,
|
2706 |
-
"loss": 0.4928,
|
2707 |
-
"step": 431
|
2708 |
-
},
|
2709 |
-
{
|
2710 |
-
"epoch": 2.06,
|
2711 |
-
"learning_rate": 7.22007722007722e-05,
|
2712 |
-
"loss": 0.4713,
|
2713 |
-
"step": 432
|
2714 |
-
},
|
2715 |
-
{
|
2716 |
-
"epoch": 2.06,
|
2717 |
-
"learning_rate": 7.181467181467182e-05,
|
2718 |
-
"loss": 0.6161,
|
2719 |
-
"step": 433
|
2720 |
-
},
|
2721 |
-
{
|
2722 |
-
"epoch": 2.07,
|
2723 |
-
"learning_rate": 7.142857142857143e-05,
|
2724 |
-
"loss": 0.566,
|
2725 |
-
"step": 434
|
2726 |
-
},
|
2727 |
-
{
|
2728 |
-
"epoch": 2.07,
|
2729 |
-
"eval_loss": 4.280820369720459,
|
2730 |
-
"eval_runtime": 7.3682,
|
2731 |
-
"eval_samples_per_second": 162.998,
|
2732 |
-
"eval_steps_per_second": 54.423,
|
2733 |
-
"step": 434
|
2734 |
-
},
|
2735 |
-
{
|
2736 |
-
"epoch": 2.07,
|
2737 |
-
"learning_rate": 7.104247104247105e-05,
|
2738 |
-
"loss": 0.5182,
|
2739 |
-
"step": 435
|
2740 |
-
},
|
2741 |
-
{
|
2742 |
-
"epoch": 2.08,
|
2743 |
-
"learning_rate": 7.065637065637066e-05,
|
2744 |
-
"loss": 0.6347,
|
2745 |
-
"step": 436
|
2746 |
-
},
|
2747 |
-
{
|
2748 |
-
"epoch": 2.08,
|
2749 |
-
"learning_rate": 7.027027027027028e-05,
|
2750 |
-
"loss": 0.6002,
|
2751 |
-
"step": 437
|
2752 |
-
},
|
2753 |
-
{
|
2754 |
-
"epoch": 2.09,
|
2755 |
-
"learning_rate": 6.988416988416989e-05,
|
2756 |
-
"loss": 0.5696,
|
2757 |
-
"step": 438
|
2758 |
-
},
|
2759 |
-
{
|
2760 |
-
"epoch": 2.09,
|
2761 |
-
"learning_rate": 6.949806949806951e-05,
|
2762 |
-
"loss": 0.5535,
|
2763 |
-
"step": 439
|
2764 |
-
},
|
2765 |
-
{
|
2766 |
-
"epoch": 2.1,
|
2767 |
-
"learning_rate": 6.911196911196911e-05,
|
2768 |
-
"loss": 0.5263,
|
2769 |
-
"step": 440
|
2770 |
-
},
|
2771 |
-
{
|
2772 |
-
"epoch": 2.1,
|
2773 |
-
"learning_rate": 6.872586872586872e-05,
|
2774 |
-
"loss": 0.5342,
|
2775 |
-
"step": 441
|
2776 |
-
},
|
2777 |
-
{
|
2778 |
-
"epoch": 2.11,
|
2779 |
-
"learning_rate": 6.833976833976834e-05,
|
2780 |
-
"loss": 0.4946,
|
2781 |
-
"step": 442
|
2782 |
-
},
|
2783 |
-
{
|
2784 |
-
"epoch": 2.11,
|
2785 |
-
"learning_rate": 6.795366795366795e-05,
|
2786 |
-
"loss": 0.5402,
|
2787 |
-
"step": 443
|
2788 |
-
},
|
2789 |
-
{
|
2790 |
-
"epoch": 2.12,
|
2791 |
-
"learning_rate": 6.756756756756757e-05,
|
2792 |
-
"loss": 0.5005,
|
2793 |
-
"step": 444
|
2794 |
-
},
|
2795 |
-
{
|
2796 |
-
"epoch": 2.12,
|
2797 |
-
"learning_rate": 6.718146718146718e-05,
|
2798 |
-
"loss": 0.6038,
|
2799 |
-
"step": 445
|
2800 |
-
},
|
2801 |
-
{
|
2802 |
-
"epoch": 2.13,
|
2803 |
-
"learning_rate": 6.67953667953668e-05,
|
2804 |
-
"loss": 0.5123,
|
2805 |
-
"step": 446
|
2806 |
-
},
|
2807 |
-
{
|
2808 |
-
"epoch": 2.13,
|
2809 |
-
"learning_rate": 6.640926640926641e-05,
|
2810 |
-
"loss": 0.558,
|
2811 |
-
"step": 447
|
2812 |
-
},
|
2813 |
-
{
|
2814 |
-
"epoch": 2.14,
|
2815 |
-
"learning_rate": 6.602316602316603e-05,
|
2816 |
-
"loss": 0.4858,
|
2817 |
-
"step": 448
|
2818 |
-
},
|
2819 |
-
{
|
2820 |
-
"epoch": 2.14,
|
2821 |
-
"learning_rate": 6.563706563706564e-05,
|
2822 |
-
"loss": 0.6183,
|
2823 |
-
"step": 449
|
2824 |
-
},
|
2825 |
-
{
|
2826 |
-
"epoch": 2.15,
|
2827 |
-
"learning_rate": 6.525096525096526e-05,
|
2828 |
-
"loss": 0.5093,
|
2829 |
-
"step": 450
|
2830 |
-
},
|
2831 |
-
{
|
2832 |
-
"epoch": 2.15,
|
2833 |
-
"learning_rate": 6.486486486486487e-05,
|
2834 |
-
"loss": 0.4336,
|
2835 |
-
"step": 451
|
2836 |
-
},
|
2837 |
-
{
|
2838 |
-
"epoch": 2.16,
|
2839 |
-
"learning_rate": 6.447876447876449e-05,
|
2840 |
-
"loss": 0.653,
|
2841 |
-
"step": 452
|
2842 |
-
},
|
2843 |
-
{
|
2844 |
-
"epoch": 2.16,
|
2845 |
-
"learning_rate": 6.40926640926641e-05,
|
2846 |
-
"loss": 0.5675,
|
2847 |
-
"step": 453
|
2848 |
-
},
|
2849 |
-
{
|
2850 |
-
"epoch": 2.17,
|
2851 |
-
"learning_rate": 6.37065637065637e-05,
|
2852 |
-
"loss": 0.5146,
|
2853 |
-
"step": 454
|
2854 |
-
},
|
2855 |
-
{
|
2856 |
-
"epoch": 2.17,
|
2857 |
-
"learning_rate": 6.332046332046332e-05,
|
2858 |
-
"loss": 0.4988,
|
2859 |
-
"step": 455
|
2860 |
-
},
|
2861 |
-
{
|
2862 |
-
"epoch": 2.17,
|
2863 |
-
"learning_rate": 6.293436293436293e-05,
|
2864 |
-
"loss": 0.5216,
|
2865 |
-
"step": 456
|
2866 |
-
},
|
2867 |
-
{
|
2868 |
-
"epoch": 2.18,
|
2869 |
-
"learning_rate": 6.254826254826255e-05,
|
2870 |
-
"loss": 0.5886,
|
2871 |
-
"step": 457
|
2872 |
-
},
|
2873 |
-
{
|
2874 |
-
"epoch": 2.18,
|
2875 |
-
"learning_rate": 6.216216216216216e-05,
|
2876 |
-
"loss": 0.5856,
|
2877 |
-
"step": 458
|
2878 |
-
},
|
2879 |
-
{
|
2880 |
-
"epoch": 2.19,
|
2881 |
-
"learning_rate": 6.177606177606178e-05,
|
2882 |
-
"loss": 0.4837,
|
2883 |
-
"step": 459
|
2884 |
-
},
|
2885 |
-
{
|
2886 |
-
"epoch": 2.19,
|
2887 |
-
"learning_rate": 6.138996138996139e-05,
|
2888 |
-
"loss": 0.6044,
|
2889 |
-
"step": 460
|
2890 |
-
},
|
2891 |
-
{
|
2892 |
-
"epoch": 2.2,
|
2893 |
-
"learning_rate": 6.100386100386101e-05,
|
2894 |
-
"loss": 0.5276,
|
2895 |
-
"step": 461
|
2896 |
-
},
|
2897 |
-
{
|
2898 |
-
"epoch": 2.2,
|
2899 |
-
"learning_rate": 6.061776061776062e-05,
|
2900 |
-
"loss": 0.4752,
|
2901 |
-
"step": 462
|
2902 |
-
},
|
2903 |
-
{
|
2904 |
-
"epoch": 2.21,
|
2905 |
-
"learning_rate": 6.023166023166024e-05,
|
2906 |
-
"loss": 0.5702,
|
2907 |
-
"step": 463
|
2908 |
-
},
|
2909 |
-
{
|
2910 |
-
"epoch": 2.21,
|
2911 |
-
"learning_rate": 5.984555984555985e-05,
|
2912 |
-
"loss": 0.4758,
|
2913 |
-
"step": 464
|
2914 |
-
},
|
2915 |
-
{
|
2916 |
-
"epoch": 2.22,
|
2917 |
-
"learning_rate": 5.9459459459459466e-05,
|
2918 |
-
"loss": 0.573,
|
2919 |
-
"step": 465
|
2920 |
-
},
|
2921 |
-
{
|
2922 |
-
"epoch": 2.22,
|
2923 |
-
"eval_loss": 4.131713390350342,
|
2924 |
-
"eval_runtime": 7.3741,
|
2925 |
-
"eval_samples_per_second": 162.866,
|
2926 |
-
"eval_steps_per_second": 54.379,
|
2927 |
-
"step": 465
|
2928 |
-
},
|
2929 |
-
{
|
2930 |
-
"epoch": 2.22,
|
2931 |
-
"learning_rate": 5.907335907335908e-05,
|
2932 |
-
"loss": 0.5373,
|
2933 |
-
"step": 466
|
2934 |
-
},
|
2935 |
-
{
|
2936 |
-
"epoch": 2.23,
|
2937 |
-
"learning_rate": 5.8687258687258696e-05,
|
2938 |
-
"loss": 0.5611,
|
2939 |
-
"step": 467
|
2940 |
-
},
|
2941 |
-
{
|
2942 |
-
"epoch": 2.23,
|
2943 |
-
"learning_rate": 5.83011583011583e-05,
|
2944 |
-
"loss": 0.5744,
|
2945 |
-
"step": 468
|
2946 |
-
},
|
2947 |
-
{
|
2948 |
-
"epoch": 2.24,
|
2949 |
-
"learning_rate": 5.791505791505791e-05,
|
2950 |
-
"loss": 0.4818,
|
2951 |
-
"step": 469
|
2952 |
-
},
|
2953 |
-
{
|
2954 |
-
"epoch": 2.24,
|
2955 |
-
"learning_rate": 5.752895752895753e-05,
|
2956 |
-
"loss": 0.4519,
|
2957 |
-
"step": 470
|
2958 |
-
},
|
2959 |
-
{
|
2960 |
-
"epoch": 2.25,
|
2961 |
-
"learning_rate": 5.714285714285714e-05,
|
2962 |
-
"loss": 0.4295,
|
2963 |
-
"step": 471
|
2964 |
-
},
|
2965 |
-
{
|
2966 |
-
"epoch": 2.25,
|
2967 |
-
"learning_rate": 5.6756756756756757e-05,
|
2968 |
-
"loss": 0.4755,
|
2969 |
-
"step": 472
|
2970 |
-
},
|
2971 |
-
{
|
2972 |
-
"epoch": 2.26,
|
2973 |
-
"learning_rate": 5.637065637065637e-05,
|
2974 |
-
"loss": 0.501,
|
2975 |
-
"step": 473
|
2976 |
-
},
|
2977 |
-
{
|
2978 |
-
"epoch": 2.26,
|
2979 |
-
"learning_rate": 5.5984555984555986e-05,
|
2980 |
-
"loss": 0.449,
|
2981 |
-
"step": 474
|
2982 |
-
},
|
2983 |
-
{
|
2984 |
-
"epoch": 2.27,
|
2985 |
-
"learning_rate": 5.55984555984556e-05,
|
2986 |
-
"loss": 0.4914,
|
2987 |
-
"step": 475
|
2988 |
-
},
|
2989 |
-
{
|
2990 |
-
"epoch": 2.27,
|
2991 |
-
"learning_rate": 5.5212355212355216e-05,
|
2992 |
-
"loss": 0.5153,
|
2993 |
-
"step": 476
|
2994 |
-
},
|
2995 |
-
{
|
2996 |
-
"epoch": 2.28,
|
2997 |
-
"learning_rate": 5.482625482625483e-05,
|
2998 |
-
"loss": 0.5433,
|
2999 |
-
"step": 477
|
3000 |
-
},
|
3001 |
-
{
|
3002 |
-
"epoch": 2.28,
|
3003 |
-
"learning_rate": 5.4440154440154445e-05,
|
3004 |
-
"loss": 0.5248,
|
3005 |
-
"step": 478
|
3006 |
-
},
|
3007 |
-
{
|
3008 |
-
"epoch": 2.29,
|
3009 |
-
"learning_rate": 5.405405405405406e-05,
|
3010 |
-
"loss": 0.5453,
|
3011 |
-
"step": 479
|
3012 |
-
},
|
3013 |
-
{
|
3014 |
-
"epoch": 2.29,
|
3015 |
-
"learning_rate": 5.3667953667953675e-05,
|
3016 |
-
"loss": 0.5288,
|
3017 |
-
"step": 480
|
3018 |
-
},
|
3019 |
-
{
|
3020 |
-
"epoch": 2.3,
|
3021 |
-
"learning_rate": 5.328185328185329e-05,
|
3022 |
-
"loss": 0.532,
|
3023 |
-
"step": 481
|
3024 |
-
},
|
3025 |
-
{
|
3026 |
-
"epoch": 2.3,
|
3027 |
-
"learning_rate": 5.2895752895752905e-05,
|
3028 |
-
"loss": 0.5139,
|
3029 |
-
"step": 482
|
3030 |
-
},
|
3031 |
-
{
|
3032 |
-
"epoch": 2.31,
|
3033 |
-
"learning_rate": 5.2509652509652506e-05,
|
3034 |
-
"loss": 0.5175,
|
3035 |
-
"step": 483
|
3036 |
-
},
|
3037 |
-
{
|
3038 |
-
"epoch": 2.31,
|
3039 |
-
"learning_rate": 5.212355212355212e-05,
|
3040 |
-
"loss": 0.6227,
|
3041 |
-
"step": 484
|
3042 |
-
},
|
3043 |
-
{
|
3044 |
-
"epoch": 2.32,
|
3045 |
-
"learning_rate": 5.1737451737451736e-05,
|
3046 |
-
"loss": 0.567,
|
3047 |
-
"step": 485
|
3048 |
-
},
|
3049 |
-
{
|
3050 |
-
"epoch": 2.32,
|
3051 |
-
"learning_rate": 5.135135135135135e-05,
|
3052 |
-
"loss": 0.5636,
|
3053 |
-
"step": 486
|
3054 |
-
},
|
3055 |
-
{
|
3056 |
-
"epoch": 2.33,
|
3057 |
-
"learning_rate": 5.0965250965250965e-05,
|
3058 |
-
"loss": 0.5367,
|
3059 |
-
"step": 487
|
3060 |
-
},
|
3061 |
-
{
|
3062 |
-
"epoch": 2.33,
|
3063 |
-
"learning_rate": 5.057915057915058e-05,
|
3064 |
-
"loss": 0.6016,
|
3065 |
-
"step": 488
|
3066 |
-
},
|
3067 |
-
{
|
3068 |
-
"epoch": 2.33,
|
3069 |
-
"learning_rate": 5.0193050193050195e-05,
|
3070 |
-
"loss": 0.4492,
|
3071 |
-
"step": 489
|
3072 |
-
},
|
3073 |
-
{
|
3074 |
-
"epoch": 2.34,
|
3075 |
-
"learning_rate": 4.980694980694981e-05,
|
3076 |
-
"loss": 0.5329,
|
3077 |
-
"step": 490
|
3078 |
-
},
|
3079 |
-
{
|
3080 |
-
"epoch": 2.34,
|
3081 |
-
"learning_rate": 4.9420849420849425e-05,
|
3082 |
-
"loss": 0.503,
|
3083 |
-
"step": 491
|
3084 |
-
},
|
3085 |
-
{
|
3086 |
-
"epoch": 2.35,
|
3087 |
-
"learning_rate": 4.903474903474904e-05,
|
3088 |
-
"loss": 0.4799,
|
3089 |
-
"step": 492
|
3090 |
-
},
|
3091 |
-
{
|
3092 |
-
"epoch": 2.35,
|
3093 |
-
"learning_rate": 4.8648648648648654e-05,
|
3094 |
-
"loss": 0.454,
|
3095 |
-
"step": 493
|
3096 |
-
},
|
3097 |
-
{
|
3098 |
-
"epoch": 2.36,
|
3099 |
-
"learning_rate": 4.826254826254826e-05,
|
3100 |
-
"loss": 0.5555,
|
3101 |
-
"step": 494
|
3102 |
-
},
|
3103 |
-
{
|
3104 |
-
"epoch": 2.36,
|
3105 |
-
"learning_rate": 4.787644787644788e-05,
|
3106 |
-
"loss": 0.5925,
|
3107 |
-
"step": 495
|
3108 |
-
},
|
3109 |
-
{
|
3110 |
-
"epoch": 2.37,
|
3111 |
-
"learning_rate": 4.749034749034749e-05,
|
3112 |
-
"loss": 0.5557,
|
3113 |
-
"step": 496
|
3114 |
-
},
|
3115 |
-
{
|
3116 |
-
"epoch": 2.37,
|
3117 |
-
"eval_loss": 4.199349403381348,
|
3118 |
-
"eval_runtime": 7.3742,
|
3119 |
-
"eval_samples_per_second": 162.866,
|
3120 |
-
"eval_steps_per_second": 54.379,
|
3121 |
-
"step": 496
|
3122 |
-
},
|
3123 |
-
{
|
3124 |
-
"epoch": 2.37,
|
3125 |
-
"learning_rate": 4.710424710424711e-05,
|
3126 |
-
"loss": 0.5157,
|
3127 |
-
"step": 497
|
3128 |
-
},
|
3129 |
-
{
|
3130 |
-
"epoch": 2.38,
|
3131 |
-
"learning_rate": 4.671814671814672e-05,
|
3132 |
-
"loss": 0.5538,
|
3133 |
-
"step": 498
|
3134 |
-
},
|
3135 |
-
{
|
3136 |
-
"epoch": 2.38,
|
3137 |
-
"learning_rate": 4.6332046332046336e-05,
|
3138 |
-
"loss": 0.6174,
|
3139 |
-
"step": 499
|
3140 |
-
},
|
3141 |
-
{
|
3142 |
-
"epoch": 2.39,
|
3143 |
-
"learning_rate": 4.594594594594595e-05,
|
3144 |
-
"loss": 0.4592,
|
3145 |
-
"step": 500
|
3146 |
-
},
|
3147 |
-
{
|
3148 |
-
"epoch": 2.39,
|
3149 |
-
"learning_rate": 4.555984555984556e-05,
|
3150 |
-
"loss": 0.4557,
|
3151 |
-
"step": 501
|
3152 |
-
},
|
3153 |
-
{
|
3154 |
-
"epoch": 2.4,
|
3155 |
-
"learning_rate": 4.5173745173745174e-05,
|
3156 |
-
"loss": 0.5154,
|
3157 |
-
"step": 502
|
3158 |
-
},
|
3159 |
-
{
|
3160 |
-
"epoch": 2.4,
|
3161 |
-
"learning_rate": 4.478764478764479e-05,
|
3162 |
-
"loss": 0.4909,
|
3163 |
-
"step": 503
|
3164 |
-
},
|
3165 |
-
{
|
3166 |
-
"epoch": 2.41,
|
3167 |
-
"learning_rate": 4.4401544401544404e-05,
|
3168 |
-
"loss": 0.4755,
|
3169 |
-
"step": 504
|
3170 |
-
},
|
3171 |
-
{
|
3172 |
-
"epoch": 2.41,
|
3173 |
-
"learning_rate": 4.401544401544402e-05,
|
3174 |
-
"loss": 0.592,
|
3175 |
-
"step": 505
|
3176 |
-
},
|
3177 |
-
{
|
3178 |
-
"epoch": 2.42,
|
3179 |
-
"learning_rate": 4.3629343629343633e-05,
|
3180 |
-
"loss": 0.5014,
|
3181 |
-
"step": 506
|
3182 |
-
},
|
3183 |
-
{
|
3184 |
-
"epoch": 2.42,
|
3185 |
-
"learning_rate": 4.324324324324325e-05,
|
3186 |
-
"loss": 0.4928,
|
3187 |
-
"step": 507
|
3188 |
-
},
|
3189 |
-
{
|
3190 |
-
"epoch": 2.43,
|
3191 |
-
"learning_rate": 4.2857142857142856e-05,
|
3192 |
-
"loss": 0.5352,
|
3193 |
-
"step": 508
|
3194 |
-
},
|
3195 |
-
{
|
3196 |
-
"epoch": 2.43,
|
3197 |
-
"learning_rate": 4.247104247104247e-05,
|
3198 |
-
"loss": 0.5457,
|
3199 |
-
"step": 509
|
3200 |
-
},
|
3201 |
-
{
|
3202 |
-
"epoch": 2.44,
|
3203 |
-
"learning_rate": 4.2084942084942086e-05,
|
3204 |
-
"loss": 0.5182,
|
3205 |
-
"step": 510
|
3206 |
-
},
|
3207 |
-
{
|
3208 |
-
"epoch": 2.44,
|
3209 |
-
"learning_rate": 4.16988416988417e-05,
|
3210 |
-
"loss": 0.527,
|
3211 |
-
"step": 511
|
3212 |
-
},
|
3213 |
-
{
|
3214 |
-
"epoch": 2.45,
|
3215 |
-
"learning_rate": 4.1312741312741316e-05,
|
3216 |
-
"loss": 0.4961,
|
3217 |
-
"step": 512
|
3218 |
-
},
|
3219 |
-
{
|
3220 |
-
"epoch": 2.45,
|
3221 |
-
"learning_rate": 4.092664092664093e-05,
|
3222 |
-
"loss": 0.4988,
|
3223 |
-
"step": 513
|
3224 |
-
},
|
3225 |
-
{
|
3226 |
-
"epoch": 2.46,
|
3227 |
-
"learning_rate": 4.0540540540540545e-05,
|
3228 |
-
"loss": 0.5314,
|
3229 |
-
"step": 514
|
3230 |
-
},
|
3231 |
-
{
|
3232 |
-
"epoch": 2.46,
|
3233 |
-
"learning_rate": 4.015444015444015e-05,
|
3234 |
-
"loss": 0.5523,
|
3235 |
-
"step": 515
|
3236 |
-
},
|
3237 |
-
{
|
3238 |
-
"epoch": 2.47,
|
3239 |
-
"learning_rate": 3.976833976833977e-05,
|
3240 |
-
"loss": 0.4368,
|
3241 |
-
"step": 516
|
3242 |
-
},
|
3243 |
-
{
|
3244 |
-
"epoch": 2.47,
|
3245 |
-
"learning_rate": 3.938223938223938e-05,
|
3246 |
-
"loss": 0.5184,
|
3247 |
-
"step": 517
|
3248 |
-
},
|
3249 |
-
{
|
3250 |
-
"epoch": 2.48,
|
3251 |
-
"learning_rate": 3.8996138996139e-05,
|
3252 |
-
"loss": 0.6171,
|
3253 |
-
"step": 518
|
3254 |
-
},
|
3255 |
-
{
|
3256 |
-
"epoch": 2.48,
|
3257 |
-
"learning_rate": 3.861003861003861e-05,
|
3258 |
-
"loss": 0.5357,
|
3259 |
-
"step": 519
|
3260 |
-
},
|
3261 |
-
{
|
3262 |
-
"epoch": 2.49,
|
3263 |
-
"learning_rate": 3.822393822393823e-05,
|
3264 |
-
"loss": 0.5664,
|
3265 |
-
"step": 520
|
3266 |
-
},
|
3267 |
-
{
|
3268 |
-
"epoch": 2.49,
|
3269 |
-
"learning_rate": 3.783783783783784e-05,
|
3270 |
-
"loss": 0.4805,
|
3271 |
-
"step": 521
|
3272 |
-
},
|
3273 |
-
{
|
3274 |
-
"epoch": 2.5,
|
3275 |
-
"learning_rate": 3.745173745173745e-05,
|
3276 |
-
"loss": 0.4562,
|
3277 |
-
"step": 522
|
3278 |
-
},
|
3279 |
-
{
|
3280 |
-
"epoch": 2.5,
|
3281 |
-
"learning_rate": 3.7065637065637065e-05,
|
3282 |
-
"loss": 0.5238,
|
3283 |
-
"step": 523
|
3284 |
-
},
|
3285 |
-
{
|
3286 |
-
"epoch": 2.5,
|
3287 |
-
"learning_rate": 3.667953667953668e-05,
|
3288 |
-
"loss": 0.4338,
|
3289 |
-
"step": 524
|
3290 |
-
},
|
3291 |
-
{
|
3292 |
-
"epoch": 2.51,
|
3293 |
-
"learning_rate": 3.6293436293436295e-05,
|
3294 |
-
"loss": 0.5656,
|
3295 |
-
"step": 525
|
3296 |
-
},
|
3297 |
-
{
|
3298 |
-
"epoch": 2.51,
|
3299 |
-
"learning_rate": 3.590733590733591e-05,
|
3300 |
-
"loss": 0.4496,
|
3301 |
-
"step": 526
|
3302 |
-
},
|
3303 |
-
{
|
3304 |
-
"epoch": 2.52,
|
3305 |
-
"learning_rate": 3.5521235521235524e-05,
|
3306 |
-
"loss": 0.4997,
|
3307 |
-
"step": 527
|
3308 |
-
},
|
3309 |
-
{
|
3310 |
-
"epoch": 2.52,
|
3311 |
-
"eval_loss": 4.19807767868042,
|
3312 |
-
"eval_runtime": 7.3698,
|
3313 |
-
"eval_samples_per_second": 162.962,
|
3314 |
-
"eval_steps_per_second": 54.411,
|
3315 |
-
"step": 527
|
3316 |
-
},
|
3317 |
-
{
|
3318 |
-
"epoch": 2.52,
|
3319 |
-
"learning_rate": 3.513513513513514e-05,
|
3320 |
-
"loss": 0.4531,
|
3321 |
-
"step": 528
|
3322 |
-
},
|
3323 |
-
{
|
3324 |
-
"epoch": 2.53,
|
3325 |
-
"learning_rate": 3.4749034749034754e-05,
|
3326 |
-
"loss": 0.5048,
|
3327 |
-
"step": 529
|
3328 |
-
},
|
3329 |
-
{
|
3330 |
-
"epoch": 2.53,
|
3331 |
-
"learning_rate": 3.436293436293436e-05,
|
3332 |
-
"loss": 0.5195,
|
3333 |
-
"step": 530
|
3334 |
-
},
|
3335 |
-
{
|
3336 |
-
"epoch": 2.54,
|
3337 |
-
"learning_rate": 3.397683397683398e-05,
|
3338 |
-
"loss": 0.4885,
|
3339 |
-
"step": 531
|
3340 |
-
},
|
3341 |
-
{
|
3342 |
-
"epoch": 2.54,
|
3343 |
-
"learning_rate": 3.359073359073359e-05,
|
3344 |
-
"loss": 0.6774,
|
3345 |
-
"step": 532
|
3346 |
-
},
|
3347 |
-
{
|
3348 |
-
"epoch": 2.55,
|
3349 |
-
"learning_rate": 3.3204633204633207e-05,
|
3350 |
-
"loss": 0.4755,
|
3351 |
-
"step": 533
|
3352 |
-
},
|
3353 |
-
{
|
3354 |
-
"epoch": 2.55,
|
3355 |
-
"learning_rate": 3.281853281853282e-05,
|
3356 |
-
"loss": 0.5164,
|
3357 |
-
"step": 534
|
3358 |
-
},
|
3359 |
-
{
|
3360 |
-
"epoch": 2.56,
|
3361 |
-
"learning_rate": 3.2432432432432436e-05,
|
3362 |
-
"loss": 0.4748,
|
3363 |
-
"step": 535
|
3364 |
-
},
|
3365 |
-
{
|
3366 |
-
"epoch": 2.56,
|
3367 |
-
"learning_rate": 3.204633204633205e-05,
|
3368 |
-
"loss": 0.5656,
|
3369 |
-
"step": 536
|
3370 |
-
},
|
3371 |
-
{
|
3372 |
-
"epoch": 2.57,
|
3373 |
-
"learning_rate": 3.166023166023166e-05,
|
3374 |
-
"loss": 0.5167,
|
3375 |
-
"step": 537
|
3376 |
-
},
|
3377 |
-
{
|
3378 |
-
"epoch": 2.57,
|
3379 |
-
"learning_rate": 3.1274131274131274e-05,
|
3380 |
-
"loss": 0.5101,
|
3381 |
-
"step": 538
|
3382 |
-
},
|
3383 |
-
{
|
3384 |
-
"epoch": 2.58,
|
3385 |
-
"learning_rate": 3.088803088803089e-05,
|
3386 |
-
"loss": 0.4965,
|
3387 |
-
"step": 539
|
3388 |
-
},
|
3389 |
-
{
|
3390 |
-
"epoch": 2.58,
|
3391 |
-
"learning_rate": 3.0501930501930504e-05,
|
3392 |
-
"loss": 0.5549,
|
3393 |
-
"step": 540
|
3394 |
-
},
|
3395 |
-
{
|
3396 |
-
"epoch": 2.59,
|
3397 |
-
"learning_rate": 3.011583011583012e-05,
|
3398 |
-
"loss": 0.4873,
|
3399 |
-
"step": 541
|
3400 |
-
},
|
3401 |
-
{
|
3402 |
-
"epoch": 2.59,
|
3403 |
-
"learning_rate": 2.9729729729729733e-05,
|
3404 |
-
"loss": 0.5093,
|
3405 |
-
"step": 542
|
3406 |
-
},
|
3407 |
-
{
|
3408 |
-
"epoch": 2.6,
|
3409 |
-
"learning_rate": 2.9343629343629348e-05,
|
3410 |
-
"loss": 0.4897,
|
3411 |
-
"step": 543
|
3412 |
-
},
|
3413 |
-
{
|
3414 |
-
"epoch": 2.6,
|
3415 |
-
"learning_rate": 2.8957528957528956e-05,
|
3416 |
-
"loss": 0.5128,
|
3417 |
-
"step": 544
|
3418 |
-
},
|
3419 |
-
{
|
3420 |
-
"epoch": 2.61,
|
3421 |
-
"learning_rate": 2.857142857142857e-05,
|
3422 |
-
"loss": 0.4829,
|
3423 |
-
"step": 545
|
3424 |
-
},
|
3425 |
-
{
|
3426 |
-
"epoch": 2.61,
|
3427 |
-
"learning_rate": 2.8185328185328186e-05,
|
3428 |
-
"loss": 0.4853,
|
3429 |
-
"step": 546
|
3430 |
-
},
|
3431 |
-
{
|
3432 |
-
"epoch": 2.62,
|
3433 |
-
"learning_rate": 2.77992277992278e-05,
|
3434 |
-
"loss": 0.5499,
|
3435 |
-
"step": 547
|
3436 |
-
},
|
3437 |
-
{
|
3438 |
-
"epoch": 2.62,
|
3439 |
-
"learning_rate": 2.7413127413127415e-05,
|
3440 |
-
"loss": 0.59,
|
3441 |
-
"step": 548
|
3442 |
-
},
|
3443 |
-
{
|
3444 |
-
"epoch": 2.63,
|
3445 |
-
"learning_rate": 2.702702702702703e-05,
|
3446 |
-
"loss": 0.5169,
|
3447 |
-
"step": 549
|
3448 |
-
},
|
3449 |
-
{
|
3450 |
-
"epoch": 2.63,
|
3451 |
-
"learning_rate": 2.6640926640926645e-05,
|
3452 |
-
"loss": 0.5642,
|
3453 |
-
"step": 550
|
3454 |
-
},
|
3455 |
-
{
|
3456 |
-
"epoch": 2.64,
|
3457 |
-
"learning_rate": 2.6254826254826253e-05,
|
3458 |
-
"loss": 0.5745,
|
3459 |
-
"step": 551
|
3460 |
-
},
|
3461 |
-
{
|
3462 |
-
"epoch": 2.64,
|
3463 |
-
"learning_rate": 2.5868725868725868e-05,
|
3464 |
-
"loss": 0.4845,
|
3465 |
-
"step": 552
|
3466 |
-
},
|
3467 |
-
{
|
3468 |
-
"epoch": 2.65,
|
3469 |
-
"learning_rate": 2.5482625482625483e-05,
|
3470 |
-
"loss": 0.5198,
|
3471 |
-
"step": 553
|
3472 |
-
},
|
3473 |
-
{
|
3474 |
-
"epoch": 2.65,
|
3475 |
-
"learning_rate": 2.5096525096525097e-05,
|
3476 |
-
"loss": 0.5402,
|
3477 |
-
"step": 554
|
3478 |
-
},
|
3479 |
-
{
|
3480 |
-
"epoch": 2.66,
|
3481 |
-
"learning_rate": 2.4710424710424712e-05,
|
3482 |
-
"loss": 0.5122,
|
3483 |
-
"step": 555
|
3484 |
-
},
|
3485 |
-
{
|
3486 |
-
"epoch": 2.66,
|
3487 |
-
"learning_rate": 2.4324324324324327e-05,
|
3488 |
-
"loss": 0.5769,
|
3489 |
-
"step": 556
|
3490 |
-
},
|
3491 |
-
{
|
3492 |
-
"epoch": 2.67,
|
3493 |
-
"learning_rate": 2.393822393822394e-05,
|
3494 |
-
"loss": 0.5519,
|
3495 |
-
"step": 557
|
3496 |
-
},
|
3497 |
-
{
|
3498 |
-
"epoch": 2.67,
|
3499 |
-
"learning_rate": 2.3552123552123553e-05,
|
3500 |
-
"loss": 0.465,
|
3501 |
-
"step": 558
|
3502 |
-
},
|
3503 |
-
{
|
3504 |
-
"epoch": 2.67,
|
3505 |
-
"eval_loss": 4.177217483520508,
|
3506 |
-
"eval_runtime": 7.3742,
|
3507 |
-
"eval_samples_per_second": 162.865,
|
3508 |
-
"eval_steps_per_second": 54.379,
|
3509 |
-
"step": 558
|
3510 |
-
},
|
3511 |
-
{
|
3512 |
-
"epoch": 2.67,
|
3513 |
-
"learning_rate": 2.3166023166023168e-05,
|
3514 |
-
"loss": 0.4816,
|
3515 |
-
"step": 559
|
3516 |
-
},
|
3517 |
-
{
|
3518 |
-
"epoch": 2.68,
|
3519 |
-
"learning_rate": 2.277992277992278e-05,
|
3520 |
-
"loss": 0.4428,
|
3521 |
-
"step": 560
|
3522 |
-
},
|
3523 |
-
{
|
3524 |
-
"epoch": 2.68,
|
3525 |
-
"learning_rate": 2.2393822393822394e-05,
|
3526 |
-
"loss": 0.4969,
|
3527 |
-
"step": 561
|
3528 |
-
},
|
3529 |
-
{
|
3530 |
-
"epoch": 2.69,
|
3531 |
-
"learning_rate": 2.200772200772201e-05,
|
3532 |
-
"loss": 0.4891,
|
3533 |
-
"step": 562
|
3534 |
-
},
|
3535 |
-
{
|
3536 |
-
"epoch": 2.69,
|
3537 |
-
"learning_rate": 2.1621621621621624e-05,
|
3538 |
-
"loss": 0.4082,
|
3539 |
-
"step": 563
|
3540 |
-
},
|
3541 |
-
{
|
3542 |
-
"epoch": 2.7,
|
3543 |
-
"learning_rate": 2.1235521235521236e-05,
|
3544 |
-
"loss": 0.4735,
|
3545 |
-
"step": 564
|
3546 |
-
},
|
3547 |
-
{
|
3548 |
-
"epoch": 2.7,
|
3549 |
-
"learning_rate": 2.084942084942085e-05,
|
3550 |
-
"loss": 0.5121,
|
3551 |
-
"step": 565
|
3552 |
-
},
|
3553 |
-
{
|
3554 |
-
"epoch": 2.71,
|
3555 |
-
"learning_rate": 2.0463320463320465e-05,
|
3556 |
-
"loss": 0.4696,
|
3557 |
-
"step": 566
|
3558 |
-
},
|
3559 |
-
{
|
3560 |
-
"epoch": 2.71,
|
3561 |
-
"learning_rate": 2.0077220077220077e-05,
|
3562 |
-
"loss": 0.397,
|
3563 |
-
"step": 567
|
3564 |
-
},
|
3565 |
-
{
|
3566 |
-
"epoch": 2.72,
|
3567 |
-
"learning_rate": 1.969111969111969e-05,
|
3568 |
-
"loss": 0.5271,
|
3569 |
-
"step": 568
|
3570 |
-
},
|
3571 |
-
{
|
3572 |
-
"epoch": 2.72,
|
3573 |
-
"learning_rate": 1.9305019305019306e-05,
|
3574 |
-
"loss": 0.4974,
|
3575 |
-
"step": 569
|
3576 |
-
},
|
3577 |
-
{
|
3578 |
-
"epoch": 2.73,
|
3579 |
-
"learning_rate": 1.891891891891892e-05,
|
3580 |
-
"loss": 0.4814,
|
3581 |
-
"step": 570
|
3582 |
-
},
|
3583 |
-
{
|
3584 |
-
"epoch": 2.73,
|
3585 |
-
"learning_rate": 1.8532818532818533e-05,
|
3586 |
-
"loss": 0.5565,
|
3587 |
-
"step": 571
|
3588 |
-
},
|
3589 |
-
{
|
3590 |
-
"epoch": 2.74,
|
3591 |
-
"learning_rate": 1.8146718146718147e-05,
|
3592 |
-
"loss": 0.4737,
|
3593 |
-
"step": 572
|
3594 |
-
},
|
3595 |
-
{
|
3596 |
-
"epoch": 2.74,
|
3597 |
-
"learning_rate": 1.7760617760617762e-05,
|
3598 |
-
"loss": 0.4448,
|
3599 |
-
"step": 573
|
3600 |
-
},
|
3601 |
-
{
|
3602 |
-
"epoch": 2.75,
|
3603 |
-
"learning_rate": 1.7374517374517377e-05,
|
3604 |
-
"loss": 0.4886,
|
3605 |
-
"step": 574
|
3606 |
-
},
|
3607 |
-
{
|
3608 |
-
"epoch": 2.75,
|
3609 |
-
"learning_rate": 1.698841698841699e-05,
|
3610 |
-
"loss": 0.5197,
|
3611 |
-
"step": 575
|
3612 |
-
},
|
3613 |
-
{
|
3614 |
-
"epoch": 2.76,
|
3615 |
-
"learning_rate": 1.6602316602316603e-05,
|
3616 |
-
"loss": 0.4688,
|
3617 |
-
"step": 576
|
3618 |
-
},
|
3619 |
-
{
|
3620 |
-
"epoch": 2.76,
|
3621 |
-
"learning_rate": 1.6216216216216218e-05,
|
3622 |
-
"loss": 0.5649,
|
3623 |
-
"step": 577
|
3624 |
-
},
|
3625 |
-
{
|
3626 |
-
"epoch": 2.77,
|
3627 |
-
"learning_rate": 1.583011583011583e-05,
|
3628 |
-
"loss": 0.5026,
|
3629 |
-
"step": 578
|
3630 |
-
},
|
3631 |
-
{
|
3632 |
-
"epoch": 2.77,
|
3633 |
-
"learning_rate": 1.5444015444015444e-05,
|
3634 |
-
"loss": 0.5832,
|
3635 |
-
"step": 579
|
3636 |
-
},
|
3637 |
-
{
|
3638 |
-
"epoch": 2.78,
|
3639 |
-
"learning_rate": 1.505791505791506e-05,
|
3640 |
-
"loss": 0.5995,
|
3641 |
-
"step": 580
|
3642 |
-
},
|
3643 |
-
{
|
3644 |
-
"epoch": 2.78,
|
3645 |
-
"learning_rate": 1.4671814671814674e-05,
|
3646 |
-
"loss": 0.5342,
|
3647 |
-
"step": 581
|
3648 |
-
},
|
3649 |
-
{
|
3650 |
-
"epoch": 2.79,
|
3651 |
-
"learning_rate": 1.4285714285714285e-05,
|
3652 |
-
"loss": 0.5465,
|
3653 |
-
"step": 582
|
3654 |
-
},
|
3655 |
-
{
|
3656 |
-
"epoch": 2.79,
|
3657 |
-
"learning_rate": 1.38996138996139e-05,
|
3658 |
-
"loss": 0.5165,
|
3659 |
-
"step": 583
|
3660 |
-
},
|
3661 |
-
{
|
3662 |
-
"epoch": 2.8,
|
3663 |
-
"learning_rate": 1.3513513513513515e-05,
|
3664 |
-
"loss": 0.4594,
|
3665 |
-
"step": 584
|
3666 |
-
},
|
3667 |
-
{
|
3668 |
-
"epoch": 2.8,
|
3669 |
-
"learning_rate": 1.3127413127413127e-05,
|
3670 |
-
"loss": 0.4448,
|
3671 |
-
"step": 585
|
3672 |
-
},
|
3673 |
-
{
|
3674 |
-
"epoch": 2.81,
|
3675 |
-
"learning_rate": 1.2741312741312741e-05,
|
3676 |
-
"loss": 0.5148,
|
3677 |
-
"step": 586
|
3678 |
-
},
|
3679 |
-
{
|
3680 |
-
"epoch": 2.81,
|
3681 |
-
"learning_rate": 1.2355212355212356e-05,
|
3682 |
-
"loss": 0.5255,
|
3683 |
-
"step": 587
|
3684 |
-
},
|
3685 |
-
{
|
3686 |
-
"epoch": 2.82,
|
3687 |
-
"learning_rate": 1.196911196911197e-05,
|
3688 |
-
"loss": 0.4979,
|
3689 |
-
"step": 588
|
3690 |
-
},
|
3691 |
-
{
|
3692 |
-
"epoch": 2.82,
|
3693 |
-
"learning_rate": 1.1583011583011584e-05,
|
3694 |
-
"loss": 0.4531,
|
3695 |
-
"step": 589
|
3696 |
-
},
|
3697 |
-
{
|
3698 |
-
"epoch": 2.82,
|
3699 |
-
"eval_loss": 4.171577453613281,
|
3700 |
-
"eval_runtime": 7.3719,
|
3701 |
-
"eval_samples_per_second": 162.916,
|
3702 |
-
"eval_steps_per_second": 54.396,
|
3703 |
-
"step": 589
|
3704 |
-
},
|
3705 |
-
{
|
3706 |
-
"epoch": 2.83,
|
3707 |
-
"learning_rate": 1.1196911196911197e-05,
|
3708 |
-
"loss": 0.5339,
|
3709 |
-
"step": 590
|
3710 |
-
},
|
3711 |
-
{
|
3712 |
-
"epoch": 2.83,
|
3713 |
-
"learning_rate": 1.0810810810810812e-05,
|
3714 |
-
"loss": 0.5242,
|
3715 |
-
"step": 591
|
3716 |
-
},
|
3717 |
-
{
|
3718 |
-
"epoch": 2.83,
|
3719 |
-
"learning_rate": 1.0424710424710425e-05,
|
3720 |
-
"loss": 0.5266,
|
3721 |
-
"step": 592
|
3722 |
-
},
|
3723 |
-
{
|
3724 |
-
"epoch": 2.84,
|
3725 |
-
"learning_rate": 1.0038610038610038e-05,
|
3726 |
-
"loss": 0.5188,
|
3727 |
-
"step": 593
|
3728 |
-
},
|
3729 |
-
{
|
3730 |
-
"epoch": 2.84,
|
3731 |
-
"learning_rate": 9.652509652509653e-06,
|
3732 |
-
"loss": 0.459,
|
3733 |
-
"step": 594
|
3734 |
-
},
|
3735 |
-
{
|
3736 |
-
"epoch": 2.85,
|
3737 |
-
"learning_rate": 9.266409266409266e-06,
|
3738 |
-
"loss": 0.3489,
|
3739 |
-
"step": 595
|
3740 |
-
},
|
3741 |
-
{
|
3742 |
-
"epoch": 2.85,
|
3743 |
-
"learning_rate": 8.880308880308881e-06,
|
3744 |
-
"loss": 0.5022,
|
3745 |
-
"step": 596
|
3746 |
-
},
|
3747 |
-
{
|
3748 |
-
"epoch": 2.86,
|
3749 |
-
"learning_rate": 8.494208494208494e-06,
|
3750 |
-
"loss": 0.4513,
|
3751 |
-
"step": 597
|
3752 |
-
},
|
3753 |
-
{
|
3754 |
-
"epoch": 2.86,
|
3755 |
-
"learning_rate": 8.108108108108109e-06,
|
3756 |
-
"loss": 0.4338,
|
3757 |
-
"step": 598
|
3758 |
-
},
|
3759 |
-
{
|
3760 |
-
"epoch": 2.87,
|
3761 |
-
"learning_rate": 7.722007722007722e-06,
|
3762 |
-
"loss": 0.5263,
|
3763 |
-
"step": 599
|
3764 |
-
},
|
3765 |
-
{
|
3766 |
-
"epoch": 2.87,
|
3767 |
-
"learning_rate": 7.335907335907337e-06,
|
3768 |
-
"loss": 0.4898,
|
3769 |
-
"step": 600
|
3770 |
-
},
|
3771 |
-
{
|
3772 |
-
"epoch": 2.88,
|
3773 |
-
"learning_rate": 6.94980694980695e-06,
|
3774 |
-
"loss": 0.5212,
|
3775 |
-
"step": 601
|
3776 |
-
},
|
3777 |
-
{
|
3778 |
-
"epoch": 2.88,
|
3779 |
-
"learning_rate": 6.563706563706563e-06,
|
3780 |
-
"loss": 0.5355,
|
3781 |
-
"step": 602
|
3782 |
-
},
|
3783 |
-
{
|
3784 |
-
"epoch": 2.89,
|
3785 |
-
"learning_rate": 6.177606177606178e-06,
|
3786 |
-
"loss": 0.5444,
|
3787 |
-
"step": 603
|
3788 |
-
},
|
3789 |
-
{
|
3790 |
-
"epoch": 2.89,
|
3791 |
-
"learning_rate": 5.791505791505792e-06,
|
3792 |
-
"loss": 0.5875,
|
3793 |
-
"step": 604
|
3794 |
-
},
|
3795 |
-
{
|
3796 |
-
"epoch": 2.9,
|
3797 |
-
"learning_rate": 5.405405405405406e-06,
|
3798 |
-
"loss": 0.4989,
|
3799 |
-
"step": 605
|
3800 |
-
},
|
3801 |
-
{
|
3802 |
-
"epoch": 2.9,
|
3803 |
-
"learning_rate": 5.019305019305019e-06,
|
3804 |
-
"loss": 0.5159,
|
3805 |
-
"step": 606
|
3806 |
-
},
|
3807 |
-
{
|
3808 |
-
"epoch": 2.91,
|
3809 |
-
"learning_rate": 4.633204633204633e-06,
|
3810 |
-
"loss": 0.3956,
|
3811 |
-
"step": 607
|
3812 |
-
},
|
3813 |
-
{
|
3814 |
-
"epoch": 2.91,
|
3815 |
-
"learning_rate": 4.247104247104247e-06,
|
3816 |
-
"loss": 0.491,
|
3817 |
-
"step": 608
|
3818 |
-
},
|
3819 |
-
{
|
3820 |
-
"epoch": 2.92,
|
3821 |
-
"learning_rate": 3.861003861003861e-06,
|
3822 |
-
"loss": 0.4454,
|
3823 |
-
"step": 609
|
3824 |
-
},
|
3825 |
-
{
|
3826 |
-
"epoch": 2.92,
|
3827 |
-
"learning_rate": 3.474903474903475e-06,
|
3828 |
-
"loss": 0.4844,
|
3829 |
-
"step": 610
|
3830 |
-
},
|
3831 |
-
{
|
3832 |
-
"epoch": 2.93,
|
3833 |
-
"learning_rate": 3.088803088803089e-06,
|
3834 |
-
"loss": 0.4972,
|
3835 |
-
"step": 611
|
3836 |
-
},
|
3837 |
-
{
|
3838 |
-
"epoch": 2.93,
|
3839 |
-
"learning_rate": 2.702702702702703e-06,
|
3840 |
-
"loss": 0.4617,
|
3841 |
-
"step": 612
|
3842 |
-
},
|
3843 |
-
{
|
3844 |
-
"epoch": 2.94,
|
3845 |
-
"learning_rate": 2.3166023166023166e-06,
|
3846 |
-
"loss": 0.4683,
|
3847 |
-
"step": 613
|
3848 |
-
},
|
3849 |
-
{
|
3850 |
-
"epoch": 2.94,
|
3851 |
-
"learning_rate": 1.9305019305019305e-06,
|
3852 |
-
"loss": 0.5815,
|
3853 |
-
"step": 614
|
3854 |
-
},
|
3855 |
-
{
|
3856 |
-
"epoch": 2.95,
|
3857 |
-
"learning_rate": 1.5444015444015445e-06,
|
3858 |
-
"loss": 0.4502,
|
3859 |
-
"step": 615
|
3860 |
-
},
|
3861 |
-
{
|
3862 |
-
"epoch": 2.95,
|
3863 |
-
"learning_rate": 1.1583011583011583e-06,
|
3864 |
-
"loss": 0.477,
|
3865 |
-
"step": 616
|
3866 |
-
},
|
3867 |
-
{
|
3868 |
-
"epoch": 2.96,
|
3869 |
-
"learning_rate": 7.722007722007723e-07,
|
3870 |
-
"loss": 0.4836,
|
3871 |
-
"step": 617
|
3872 |
-
},
|
3873 |
-
{
|
3874 |
-
"epoch": 2.96,
|
3875 |
-
"learning_rate": 3.8610038610038613e-07,
|
3876 |
-
"loss": 0.4523,
|
3877 |
-
"step": 618
|
3878 |
-
}
|
3879 |
-
],
|
3880 |
-
"logging_steps": 1,
|
3881 |
-
"max_steps": 618,
|
3882 |
-
"num_train_epochs": 3,
|
3883 |
-
"save_steps": 500,
|
3884 |
-
"total_flos": 3.072196311043277e+17,
|
3885 |
-
"trial_name": null,
|
3886 |
-
"trial_params": null
|
3887 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
checkpoint-618/training_args.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:40caa3ffe88e39fb8f17ca2f4b2952df2344fe3de9435a3b5cb8662a65ff745d
|
3 |
-
size 6011
|
|
|
|
|
|
|
|
checkpoint-618/zero_to_fp32.py
DELETED
@@ -1,587 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python
|
2 |
-
|
3 |
-
# Copyright (c) Microsoft Corporation.
|
4 |
-
# SPDX-License-Identifier: Apache-2.0
|
5 |
-
|
6 |
-
# DeepSpeed Team
|
7 |
-
|
8 |
-
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
-
# application.
|
12 |
-
#
|
13 |
-
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
-
|
15 |
-
import argparse
|
16 |
-
import torch
|
17 |
-
import glob
|
18 |
-
import math
|
19 |
-
import os
|
20 |
-
import re
|
21 |
-
from collections import OrderedDict
|
22 |
-
from dataclasses import dataclass
|
23 |
-
|
24 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
-
from deepspeed.utils import logger
|
27 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
-
|
31 |
-
|
32 |
-
@dataclass
|
33 |
-
class zero_model_state:
|
34 |
-
buffers: dict()
|
35 |
-
param_shapes: dict()
|
36 |
-
shared_params: list
|
37 |
-
ds_version: int
|
38 |
-
frozen_param_shapes: dict()
|
39 |
-
frozen_param_fragments: dict()
|
40 |
-
|
41 |
-
|
42 |
-
debug = 0
|
43 |
-
|
44 |
-
# load to cpu
|
45 |
-
device = torch.device('cpu')
|
46 |
-
|
47 |
-
|
48 |
-
def atoi(text):
|
49 |
-
return int(text) if text.isdigit() else text
|
50 |
-
|
51 |
-
|
52 |
-
def natural_keys(text):
|
53 |
-
'''
|
54 |
-
alist.sort(key=natural_keys) sorts in human order
|
55 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
-
(See Toothy's implementation in the comments)
|
57 |
-
'''
|
58 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
-
|
60 |
-
|
61 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
-
if not os.path.isdir(checkpoint_dir):
|
63 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
-
|
65 |
-
# there should be only one file
|
66 |
-
if zero_stage <= 2:
|
67 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
-
elif zero_stage == 3:
|
69 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
-
|
71 |
-
if not os.path.exists(file):
|
72 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
-
|
74 |
-
return file
|
75 |
-
|
76 |
-
|
77 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
-
|
81 |
-
if len(ckpt_files) == 0:
|
82 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
-
|
84 |
-
return ckpt_files
|
85 |
-
|
86 |
-
|
87 |
-
def get_optim_files(checkpoint_dir):
|
88 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
-
|
90 |
-
|
91 |
-
def get_model_state_files(checkpoint_dir):
|
92 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
-
|
94 |
-
|
95 |
-
def parse_model_states(files):
|
96 |
-
zero_model_states = []
|
97 |
-
for file in files:
|
98 |
-
state_dict = torch.load(file, map_location=device)
|
99 |
-
|
100 |
-
if BUFFER_NAMES not in state_dict:
|
101 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
-
if debug:
|
104 |
-
print("Found buffers:", buffer_names)
|
105 |
-
|
106 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
-
|
110 |
-
# collect parameters that are included in param_shapes
|
111 |
-
param_names = []
|
112 |
-
for s in param_shapes:
|
113 |
-
for name in s.keys():
|
114 |
-
param_names.append(name)
|
115 |
-
|
116 |
-
# update with frozen parameters
|
117 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
-
if frozen_param_shapes is not None:
|
119 |
-
if debug:
|
120 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
-
param_names += list(frozen_param_shapes.keys())
|
122 |
-
|
123 |
-
# handle shared params
|
124 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
-
|
126 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
-
|
128 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
-
|
130 |
-
z_model_state = zero_model_state(buffers=buffers,
|
131 |
-
param_shapes=param_shapes,
|
132 |
-
shared_params=shared_params,
|
133 |
-
ds_version=ds_version,
|
134 |
-
frozen_param_shapes=frozen_param_shapes,
|
135 |
-
frozen_param_fragments=frozen_param_fragments)
|
136 |
-
zero_model_states.append(z_model_state)
|
137 |
-
|
138 |
-
return zero_model_states
|
139 |
-
|
140 |
-
|
141 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
-
|
143 |
-
total_files = len(files)
|
144 |
-
state_dicts = []
|
145 |
-
for f in files:
|
146 |
-
state_dict = torch.load(f, map_location=device)
|
147 |
-
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
-
# and also handle the case where it was already removed by another helper script
|
149 |
-
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
-
state_dicts.append(state_dict)
|
151 |
-
|
152 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
-
|
157 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
-
# use the max of the partition_count to get the dp world_size.
|
160 |
-
|
161 |
-
if type(world_size) is list:
|
162 |
-
world_size = max(world_size)
|
163 |
-
|
164 |
-
if world_size != total_files:
|
165 |
-
raise ValueError(
|
166 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
-
)
|
169 |
-
|
170 |
-
# the groups are named differently in each stage
|
171 |
-
if zero_stage <= 2:
|
172 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
-
elif zero_stage == 3:
|
174 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
-
else:
|
176 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
-
|
178 |
-
if zero_stage <= 2:
|
179 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
-
elif zero_stage == 3:
|
181 |
-
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
-
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
-
#
|
184 |
-
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
-
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
-
|
187 |
-
fp32_flat_groups = [
|
188 |
-
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
-
]
|
190 |
-
|
191 |
-
return zero_stage, world_size, fp32_flat_groups
|
192 |
-
|
193 |
-
|
194 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
-
"""
|
196 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
-
|
198 |
-
Args:
|
199 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
-
|
201 |
-
"""
|
202 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
-
|
204 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
-
|
208 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
-
|
210 |
-
zero_model_states = parse_model_states(model_files)
|
211 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
-
|
213 |
-
if zero_stage <= 2:
|
214 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
-
elif zero_stage == 3:
|
216 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
-
|
218 |
-
|
219 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
-
return
|
222 |
-
|
223 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
-
|
226 |
-
if debug:
|
227 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
-
|
230 |
-
wanted_params = len(frozen_param_shapes)
|
231 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
-
|
236 |
-
total_params = 0
|
237 |
-
total_numel = 0
|
238 |
-
for name, shape in frozen_param_shapes.items():
|
239 |
-
total_params += 1
|
240 |
-
unpartitioned_numel = shape.numel()
|
241 |
-
total_numel += unpartitioned_numel
|
242 |
-
|
243 |
-
state_dict[name] = frozen_param_fragments[name]
|
244 |
-
|
245 |
-
if debug:
|
246 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
-
|
248 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
-
|
250 |
-
|
251 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
-
param_shapes = zero_model_states[0].param_shapes
|
253 |
-
|
254 |
-
# Reconstruction protocol:
|
255 |
-
#
|
256 |
-
# XXX: document this
|
257 |
-
|
258 |
-
if debug:
|
259 |
-
for i in range(world_size):
|
260 |
-
for j in range(len(fp32_flat_groups[0])):
|
261 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
-
|
263 |
-
# XXX: memory usage doubles here (zero2)
|
264 |
-
num_param_groups = len(fp32_flat_groups[0])
|
265 |
-
merged_single_partition_of_fp32_groups = []
|
266 |
-
for i in range(num_param_groups):
|
267 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
-
avail_numel = sum(
|
271 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
-
|
273 |
-
if debug:
|
274 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
-
# not asserting if there is a mismatch due to possible padding
|
277 |
-
print(f"Have {avail_numel} numels to process.")
|
278 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
-
|
280 |
-
# params
|
281 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
-
# out-of-core computing solution
|
283 |
-
total_numel = 0
|
284 |
-
total_params = 0
|
285 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
-
offset = 0
|
287 |
-
avail_numel = full_single_fp32_vector.numel()
|
288 |
-
for name, shape in shapes.items():
|
289 |
-
|
290 |
-
unpartitioned_numel = shape.numel()
|
291 |
-
total_numel += unpartitioned_numel
|
292 |
-
total_params += 1
|
293 |
-
|
294 |
-
if debug:
|
295 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
-
offset += unpartitioned_numel
|
298 |
-
|
299 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
-
align_to = 2 * world_size
|
304 |
-
|
305 |
-
def zero2_align(x):
|
306 |
-
return align_to * math.ceil(x / align_to)
|
307 |
-
|
308 |
-
if debug:
|
309 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
-
|
311 |
-
offset = zero2_align(offset)
|
312 |
-
avail_numel = zero2_align(avail_numel)
|
313 |
-
|
314 |
-
if debug:
|
315 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
-
|
317 |
-
# Sanity check
|
318 |
-
if offset != avail_numel:
|
319 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
-
|
321 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
-
|
323 |
-
|
324 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
-
state_dict = OrderedDict()
|
326 |
-
|
327 |
-
# buffers
|
328 |
-
buffers = zero_model_states[0].buffers
|
329 |
-
state_dict.update(buffers)
|
330 |
-
if debug:
|
331 |
-
print(f"added {len(buffers)} buffers")
|
332 |
-
|
333 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
-
|
335 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
-
|
337 |
-
# recover shared parameters
|
338 |
-
for pair in zero_model_states[0].shared_params:
|
339 |
-
if pair[1] in state_dict:
|
340 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
-
|
342 |
-
return state_dict
|
343 |
-
|
344 |
-
|
345 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
-
remainder = unpartitioned_numel % world_size
|
347 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
-
return partitioned_numel, padding_numel
|
350 |
-
|
351 |
-
|
352 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
-
return
|
355 |
-
|
356 |
-
if debug:
|
357 |
-
for i in range(world_size):
|
358 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
-
|
361 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
-
wanted_params = len(frozen_param_shapes)
|
363 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
-
|
368 |
-
total_params = 0
|
369 |
-
total_numel = 0
|
370 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
-
total_params += 1
|
372 |
-
unpartitioned_numel = shape.numel()
|
373 |
-
total_numel += unpartitioned_numel
|
374 |
-
|
375 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
-
|
378 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
-
|
380 |
-
if debug:
|
381 |
-
print(
|
382 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
-
)
|
384 |
-
|
385 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
-
|
387 |
-
|
388 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
-
param_shapes = zero_model_states[0].param_shapes
|
390 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
-
# param, re-consolidating each param, while dealing with padding if any
|
393 |
-
|
394 |
-
# merge list of dicts, preserving order
|
395 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
-
|
397 |
-
if debug:
|
398 |
-
for i in range(world_size):
|
399 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
-
|
401 |
-
wanted_params = len(param_shapes)
|
402 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
-
# not asserting if there is a mismatch due to possible padding
|
404 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
-
|
408 |
-
# params
|
409 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
-
# out-of-core computing solution
|
411 |
-
offset = 0
|
412 |
-
total_numel = 0
|
413 |
-
total_params = 0
|
414 |
-
for name, shape in param_shapes.items():
|
415 |
-
|
416 |
-
unpartitioned_numel = shape.numel()
|
417 |
-
total_numel += unpartitioned_numel
|
418 |
-
total_params += 1
|
419 |
-
|
420 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
-
|
422 |
-
if debug:
|
423 |
-
print(
|
424 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
-
)
|
426 |
-
|
427 |
-
# XXX: memory usage doubles here
|
428 |
-
state_dict[name] = torch.cat(
|
429 |
-
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
-
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
-
offset += partitioned_numel
|
432 |
-
|
433 |
-
offset *= world_size
|
434 |
-
|
435 |
-
# Sanity check
|
436 |
-
if offset != avail_numel:
|
437 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
-
|
439 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
-
|
441 |
-
|
442 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
-
state_dict = OrderedDict()
|
444 |
-
|
445 |
-
# buffers
|
446 |
-
buffers = zero_model_states[0].buffers
|
447 |
-
state_dict.update(buffers)
|
448 |
-
if debug:
|
449 |
-
print(f"added {len(buffers)} buffers")
|
450 |
-
|
451 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
-
|
453 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
-
|
455 |
-
# recover shared parameters
|
456 |
-
for pair in zero_model_states[0].shared_params:
|
457 |
-
if pair[1] in state_dict:
|
458 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
-
|
460 |
-
return state_dict
|
461 |
-
|
462 |
-
|
463 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
-
"""
|
465 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
-
via a model hub.
|
468 |
-
|
469 |
-
Args:
|
470 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
-
|
473 |
-
Returns:
|
474 |
-
- pytorch ``state_dict``
|
475 |
-
|
476 |
-
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
-
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
-
the checkpoint.
|
479 |
-
|
480 |
-
A typical usage might be ::
|
481 |
-
|
482 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
-
# do the training and checkpoint saving
|
484 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
-
model = model.cpu() # move to cpu
|
486 |
-
model.load_state_dict(state_dict)
|
487 |
-
# submit to model hub or save the model to share with others
|
488 |
-
|
489 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
-
|
493 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
-
|
495 |
-
"""
|
496 |
-
if tag is None:
|
497 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
-
if os.path.isfile(latest_path):
|
499 |
-
with open(latest_path, 'r') as fd:
|
500 |
-
tag = fd.read().strip()
|
501 |
-
else:
|
502 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
-
|
504 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
-
|
506 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
-
|
509 |
-
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
-
|
511 |
-
|
512 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
-
"""
|
514 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
-
|
517 |
-
Args:
|
518 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
-
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
-
"""
|
522 |
-
|
523 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
-
print(f"Saving fp32 state dict to {output_file}")
|
525 |
-
torch.save(state_dict, output_file)
|
526 |
-
|
527 |
-
|
528 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
-
"""
|
530 |
-
1. Put the provided model to cpu
|
531 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
-
3. Load it into the provided model
|
533 |
-
|
534 |
-
Args:
|
535 |
-
- ``model``: the model object to update
|
536 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
-
|
539 |
-
Returns:
|
540 |
-
- ``model`: modified model
|
541 |
-
|
542 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
-
conveniently placed for you in the checkpoint folder.
|
545 |
-
|
546 |
-
A typical usage might be ::
|
547 |
-
|
548 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
-
# submit to model hub or save the model to share with others
|
551 |
-
|
552 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
-
|
556 |
-
"""
|
557 |
-
logger.info(f"Extracting fp32 weights")
|
558 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
-
|
560 |
-
logger.info(f"Overwriting model with fp32 weights")
|
561 |
-
model = model.cpu()
|
562 |
-
model.load_state_dict(state_dict, strict=False)
|
563 |
-
|
564 |
-
return model
|
565 |
-
|
566 |
-
|
567 |
-
if __name__ == "__main__":
|
568 |
-
|
569 |
-
parser = argparse.ArgumentParser()
|
570 |
-
parser.add_argument("checkpoint_dir",
|
571 |
-
type=str,
|
572 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
-
parser.add_argument(
|
574 |
-
"output_file",
|
575 |
-
type=str,
|
576 |
-
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
-
parser.add_argument("-t",
|
578 |
-
"--tag",
|
579 |
-
type=str,
|
580 |
-
default=None,
|
581 |
-
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
-
args = parser.parse_args()
|
584 |
-
|
585 |
-
debug = args.debug
|
586 |
-
|
587 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|