File size: 17,310 Bytes
810c498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
---
base_model: sentence-transformers/all-MiniLM-L12-v2
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:100000
- loss:CosineSimilarityLoss
widget:
- source_sentence: Face off with a ref mid-hockey game in an arena.
  sentences:
  - Nobody is playing
  - A mustached man in a patterned shirt watches a boat painted blue and orange.
  - Two adults makes calls on there cell phones during there lunch breaks.
- source_sentence: A group of people, one holding a yellow and blue umbrella, are
    standing at the top of some stairs.
  sentences:
  - One person wields an umbrella.
  - A girl is on the beach.
  - A man is on his couch.
- source_sentence: A man waiting for the results of the machine after doing an experiment
    in his laboratory.
  sentences:
  - There is a man playing an instrument while running
  - A man in a lab waits to get more information about his experiment.
  - The graffiti artists admire their work.
- source_sentence: People in a tent shelter near the bottom of stairs.
  sentences:
  - A boy has fallen asleep during dinner.
  - Three men address a crowd.
  - People are in a makeshift shelter at the foot of a staircase.
- source_sentence: A female researcher looking through a microscope.
  sentences:
  - A man misses the rope and falls
  - A small girl is playing video games
  - A woman is researching with a microscope.
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
  results:
  - task:
      type: semantic-similarity
      name: Semantic Similarity
    dataset:
      name: snli dev
      type: snli-dev
    metrics:
    - type: pearson_cosine
      value: 0.48994508338253345
      name: Pearson Cosine
    - type: spearman_cosine
      value: 0.4778683474663533
      name: Spearman Cosine
    - type: pearson_manhattan
      value: 0.46917600703738915
      name: Pearson Manhattan
    - type: spearman_manhattan
      value: 0.47754796729416876
      name: Spearman Manhattan
    - type: pearson_euclidean
      value: 0.46924620767742137
      name: Pearson Euclidean
    - type: spearman_euclidean
      value: 0.4778683474663533
      name: Spearman Euclidean
    - type: pearson_dot
      value: 0.48994508631435785
      name: Pearson Dot
    - type: spearman_dot
      value: 0.4778683472855999
      name: Spearman Dot
    - type: pearson_max
      value: 0.48994508631435785
      name: Pearson Max
    - type: spearman_max
      value: 0.4778683474663533
      name: Spearman Max
---

# SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision 30ce63ae64e71b9199b3d2eae9de99f64a26eedc -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Nessrine9/finetuned2-snli-MiniLM-L12-v2")
# Run inference
sentences = [
    'A female researcher looking through a microscope.',
    'A woman is researching with a microscope.',
    'A small girl is playing video games',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Semantic Similarity
* Dataset: `snli-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| pearson_cosine     | 0.4899     |
| spearman_cosine    | 0.4779     |
| pearson_manhattan  | 0.4692     |
| spearman_manhattan | 0.4775     |
| pearson_euclidean  | 0.4692     |
| spearman_euclidean | 0.4779     |
| pearson_dot        | 0.4899     |
| spearman_dot       | 0.4779     |
| pearson_max        | 0.4899     |
| **spearman_max**   | **0.4779** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 100,000 training samples
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                        | sentence_1                                                                        | label                                                         |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                         |
  | details | <ul><li>min: 7 tokens</li><li>mean: 16.32 tokens</li><li>max: 86 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.46 tokens</li><li>max: 32 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
* Samples:
  | sentence_0                                                                                                                                         | sentence_1                                         | label            |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------|:-----------------|
  | <code>A man wearing jeans and a t-shirt plays guitar for a smiling woman and child as they sit on a staircase near red and orange balloons.</code> | <code>A man is in jail.</code>                     | <code>1.0</code> |
  | <code>A boy wearing blue short standing on the traffic signal pole.</code>                                                                         | <code>The boy is carrying his school books.</code> | <code>0.5</code> |
  | <code>Several people on a busy street or perhaps at a fair.</code>                                                                                 | <code>They are walkng.</code>                      | <code>0.5</code> |
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
  ```json
  {
      "loss_fct": "torch.nn.modules.loss.MSELoss"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `fp16`: True
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch  | Step  | Training Loss | snli-dev_spearman_max |
|:------:|:-----:|:-------------:|:---------------------:|
| 0.08   | 500   | 0.1832        | 0.3114                |
| 0.16   | 1000  | 0.1489        | 0.3518                |
| 0.24   | 1500  | 0.1468        | 0.3697                |
| 0.32   | 2000  | 0.1411        | 0.3723                |
| 0.4    | 2500  | 0.14          | 0.4062                |
| 0.48   | 3000  | 0.1366        | 0.3923                |
| 0.56   | 3500  | 0.1379        | 0.4143                |
| 0.64   | 4000  | 0.1357        | 0.3928                |
| 0.72   | 4500  | 0.1331        | 0.4067                |
| 0.8    | 5000  | 0.1338        | 0.4293                |
| 0.88   | 5500  | 0.1294        | 0.4183                |
| 0.96   | 6000  | 0.1305        | 0.4402                |
| 1.0    | 6250  | -             | 0.4454                |
| 1.04   | 6500  | 0.1303        | 0.4408                |
| 1.12   | 7000  | 0.1275        | 0.4416                |
| 1.2    | 7500  | 0.1285        | 0.4287                |
| 1.28   | 8000  | 0.125         | 0.4404                |
| 1.3600 | 8500  | 0.1253        | 0.4408                |
| 1.44   | 9000  | 0.1246        | 0.4293                |
| 1.52   | 9500  | 0.126         | 0.4535                |
| 1.6    | 10000 | 0.1257        | 0.4455                |
| 1.6800 | 10500 | 0.1264        | 0.4520                |
| 1.76   | 11000 | 0.1248        | 0.4526                |
| 1.8400 | 11500 | 0.1208        | 0.4631                |
| 1.92   | 12000 | 0.1236        | 0.4635                |
| 2.0    | 12500 | 0.1239        | 0.4573                |
| 2.08   | 13000 | 0.1209        | 0.4569                |
| 2.16   | 13500 | 0.1194        | 0.4642                |
| 2.24   | 14000 | 0.1206        | 0.4539                |
| 2.32   | 14500 | 0.117         | 0.4633                |
| 2.4    | 15000 | 0.1171        | 0.4657                |
| 2.48   | 15500 | 0.1181        | 0.4633                |
| 2.56   | 16000 | 0.1197        | 0.4552                |
| 2.64   | 16500 | 0.1182        | 0.4670                |
| 2.7200 | 17000 | 0.1155        | 0.4684                |
| 2.8    | 17500 | 0.1171        | 0.4640                |
| 2.88   | 18000 | 0.1139        | 0.4715                |
| 2.96   | 18500 | 0.1164        | 0.4769                |
| 3.0    | 18750 | -             | 0.4709                |
| 3.04   | 19000 | 0.1151        | 0.4704                |
| 3.12   | 19500 | 0.1144        | 0.4759                |
| 3.2    | 20000 | 0.1121        | 0.4795                |
| 3.2800 | 20500 | 0.1104        | 0.4697                |
| 3.36   | 21000 | 0.1127        | 0.4763                |
| 3.44   | 21500 | 0.1115        | 0.4742                |
| 3.52   | 22000 | 0.1126        | 0.4697                |
| 3.6    | 22500 | 0.1123        | 0.4735                |
| 3.68   | 23000 | 0.1132        | 0.4750                |
| 3.76   | 23500 | 0.1127        | 0.4743                |
| 3.84   | 24000 | 0.1086        | 0.4752                |
| 3.92   | 24500 | 0.1107        | 0.4781                |
| 4.0    | 25000 | 0.1114        | 0.4779                |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.5.0+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->