File size: 10,731 Bytes
3d735e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322afd6
3d735e1
 
ed04ff9
3d735e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
322afd6
3d735e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
---
tags:
- audio
- text-to-speech
- onnx
inference: false
language: en
datasets:
- CSTR-Edinburgh/vctk
license: apache-2.0
library_name: txtai
---

# ESPnet VITS Text-to-Speech (TTS) Model for ONNX

[espnet/kan-bayashi_vctk_vits](https://huggingface.co/espnet/kan-bayashi_vctk_tts_train_multi_spk_vits_raw_phn_tacotron_g2p_en_no_space_train.total_count.ave) exported to ONNX. This model is an ONNX export using the [espnet_onnx](https://github.com/espnet/espnet_onnx) library.

## Usage with txtai

[txtai](https://github.com/neuml/txtai) has a built in Text to Speech (TTS) pipeline that makes using this model easy. 

_Note the following example requires txtai >= 7.5_

```python
import soundfile as sf

from txtai.pipeline import TextToSpeech

# Build pipeline
tts = TextToSpeech("NeuML/vctk-vits-onnx")

# Generate speech with speaker id
speech, rate = tts("Say something here", speaker=15)

# Write to file
sf.write("out.wav", speech, rate)
```

## Usage with ONNX

This model can also be run directly with ONNX provided the input text is tokenized. Tokenization can be done with [ttstokenizer](https://github.com/neuml/ttstokenizer).

Note that the txtai pipeline has additional functionality such as batching large inputs together that would need to be duplicated with this method.

```python
import numpy as np
import onnxruntime
import soundfile as sf
import yaml

from ttstokenizer import TTSTokenizer

# This example assumes the files have been downloaded locally
with open("vctk-vits-onnx/config.yaml", "r", encoding="utf-8") as f:
    config = yaml.safe_load(f)

# Create model
model = onnxruntime.InferenceSession(
    "vctk-vits-onnx/model.onnx",
    providers=["CPUExecutionProvider"]
)

# Create tokenizer
tokenizer = TTSTokenizer(config["token"]["list"])

# Tokenize inputs
inputs = tokenizer("Say something here")

# Generate speech
outputs = model.run(None, {"text": inputs, "sids": np.array([15])})

# Write to file
sf.write("out.wav", outputs[0], 22050)
```

## How to export

More information on how to export ESPnet models to ONNX can be [found here](https://github.com/espnet/espnet_onnx#text2speech-inference).

## Speaker reference

The [CSTR VCTK Corpus](https://datashare.ed.ac.uk/handle/10283/3443) includes speech data uttered by native speakers of English with various accents.

When using this model, set a `speaker` id from the reference table below. The `ref` column corresponds to the id in the VCTK dataset.

|   SPEAKER |  REF |   AGE | GENDER   | ACCENTS        | REGION           |
|----------:|-----:|------:|:---------|:---------------|:-----------------|
|         1 |  225 |    23 | F        | English        | Southern England |
|         2 |  226 |    22 | M        | English        | Surrey           |
|         3 |  227 |    38 | M        | English        | Cumbria          |
|         4 |  228 |    22 | F        | English        | Southern England |
|         5 |  229 |    23 | F        | English        | Southern England |
|         6 |  230 |    22 | F        | English        | Stockton-on-tees |
|         7 |  231 |    23 | F        | English        | Southern England |
|         8 |  232 |    23 | M        | English        | Southern England |
|         9 |  233 |    23 | F        | English        | Staffordshire    |
|        10 |  234 |    22 | F        | Scottish       | West Dumfries    |
|        11 |  236 |    23 | F        | English        | Manchester       |
|        12 |  237 |    22 | M        | Scottish       | Fife             |
|        13 |  238 |    22 | F        | Northern Irish | Belfast          |
|        14 |  239 |    22 | F        | English        | SW England       |
|        15 |  240 |    21 | F        | English        | Southern England |
|        16 |  241 |    21 | M        | Scottish       | Perth            |
|        17 |  243 |    22 | M        | English        | London           |
|        18 |  244 |    22 | F        | English        | Manchester       |
|        19 |  245 |    25 | M        | Irish          | Dublin           |
|        20 |  246 |    22 | M        | Scottish       | Selkirk          |
|        21 |  247 |    22 | M        | Scottish       | Argyll           |
|        22 |  248 |    23 | F        | Indian         |                  |
|        23 |  249 |    22 | F        | Scottish       | Aberdeen         |
|        24 |  250 |    22 | F        | English        | SE England       |
|        25 |  251 |    26 | M        | Indian         |                  |
|        26 |  252 |    22 | M        | Scottish       | Edinburgh        |
|        27 |  253 |    22 | F        | Welsh          | Cardiff          |
|        28 |  254 |    21 | M        | English        | Surrey           |
|        29 |  255 |    19 | M        | Scottish       | Galloway         |
|        30 |  256 |    24 | M        | English        | Birmingham       |
|        31 |  257 |    24 | F        | English        | Southern England |
|        32 |  258 |    22 | M        | English        | Southern England |
|        33 |  259 |    23 | M        | English        | Nottingham       |
|        34 |  260 |    21 | M        | Scottish       | Orkney           |
|        35 |  261 |    26 | F        | Northern Irish | Belfast          |
|        36 |  262 |    23 | F        | Scottish       | Edinburgh        |
|        37 |  263 |    22 | M        | Scottish       | Aberdeen         |
|        38 |  264 |    23 | F        | Scottish       | West Lothian     |
|        39 |  265 |    23 | F        | Scottish       | Ross             |
|        40 |  266 |    22 | F        | Irish          | Athlone          |
|        41 |  267 |    23 | F        | English        | Yorkshire        |
|        42 |  268 |    23 | F        | English        | Southern England |
|        43 |  269 |    20 | F        | English        | Newcastle        |
|        44 |  270 |    21 | M        | English        | Yorkshire        |
|        45 |  271 |    19 | M        | Scottish       | Fife             |
|        46 |  272 |    23 | M        | Scottish       | Edinburgh        |
|        47 |  273 |    23 | M        | English        | Suffolk          |
|        48 |  274 |    22 | M        | English        | Essex            |
|        49 |  275 |    23 | M        | Scottish       | Midlothian       |
|        50 |  276 |    24 | F        | English        | Oxford           |
|        51 |  277 |    23 | F        | English        | NE England       |
|        52 |  278 |    22 | M        | English        | Cheshire         |
|        53 |  279 |    23 | M        | English        | Leicester        |
|        54 |  280 |       |          | Unknown        |                  |
|        55 |  281 |    29 | M        | Scottish       | Edinburgh        |
|        56 |  282 |    23 | F        | English        | Newcastle        |
|        57 |  283 |    24 | F        | Irish          | Cork             |
|        58 |  284 |    20 | M        | Scottish       | Fife             |
|        59 |  285 |    21 | M        | Scottish       | Edinburgh        |
|        60 |  286 |    23 | M        | English        | Newcastle        |
|        61 |  287 |    23 | M        | English        | York             |
|        62 |  288 |    22 | F        | Irish          | Dublin           |
|        63 |  292 |    23 | M        | Northern Irish | Belfast          |
|        64 |  293 |    22 | F        | Northern Irish | Belfast          |
|        65 |  294 |    33 | F        | American       | San Francisco    |
|        66 |  295 |    23 | F        | Irish          | Dublin           |
|        67 |  297 |    20 | F        | American       | New York         |
|        68 |  298 |    19 | M        | Irish          | Tipperary        |
|        69 |  299 |    25 | F        | American       | California       |
|        70 |  300 |    23 | F        | American       | California       |
|        71 |  301 |    23 | F        | American       | North Carolina   |
|        72 |  302 |    20 | M        | Canadian       | Montreal         |
|        73 |  303 |    24 | F        | Canadian       | Toronto          |
|        74 |  304 |    22 | M        | Northern Irish | Belfast          |
|        75 |  305 |    19 | F        | American       | Philadelphia     |
|        76 |  306 |    21 | F        | American       | New York         |
|        77 |  307 |    23 | F        | Canadian       | Ontario          |
|        78 |  308 |    18 | F        | American       | Alabama          |
|        79 |  310 |    21 | F        | American       | Tennessee        |
|        80 |  311 |    21 | M        | American       | Iowa             |
|        81 |  312 |    19 | F        | Canadian       | Hamilton         |
|        82 |  313 |    24 | F        | Irish          | County Down      |
|        83 |  314 |    26 | F        | South African  | Cape Town        |
|        84 |  316 |    20 | M        | Canadian       | Alberta          |
|        85 |  317 |    23 | F        | Canadian       | Hamilton         |
|        86 |  318 |    32 | F        | American       | Napa             |
|        87 |  323 |    19 | F        | South African  | Pretoria         |
|        88 |  326 |    26 | M        | Australian     | Sydney           |
|        89 |  329 |    23 | F        | American       |                  |
|        90 |  330 |    26 | F        | American       |                  |
|        91 |  333 |    19 | F        | American       | Indiana          |
|        92 |  334 |    18 | M        | American       | Chicago          |
|        93 |  335 |    25 | F        | New Zealand    | English          |
|        94 |  336 |    18 | F        | South African  | Johannesburg     |
|        95 |  339 |    21 | F        | American       | Pennsylvania     |
|        96 |  340 |    18 | F        | Irish          | Dublin           |
|        97 |  341 |    26 | F        | American       | Ohio             |
|        98 |  343 |    27 | F        | Canadian       | Alberta          |
|        99 |  345 |    22 | M        | American       | Florida          |
|       100 |  347 |    26 | M        | South African  | Johannesburg     |
|       101 |  351 |    21 | F        | Northern Irish | Derry            |
|       102 |  360 |    19 | M        | American       | New Jersey       |
|       103 |  361 |    19 | F        | American       | New Jersey       |
|       104 |  362 |    29 | F        | American       |                  |
|       105 |  363 |    22 | M        | Canadian       | Toronto          |
|       106 |  364 |    23 | M        | Irish          | Donegal          |
|       107 |  374 |    28 | M        | Australian     | English          |