File size: 1,626 Bytes
f07ab92 f306e9f f07ab92 f306e9f f07ab92 f306e9f f07ab92 f306e9f f07ab92 f306e9f f07ab92 f306e9f f07ab92 f306e9f f07ab92 f306e9f f07ab92 f306e9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- amazon-reviews-2023
model-index:
- name: book_reviews_model
results: []
---
---
library_name: transformers
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- amazon-reviews-2023
model-index:
- name: book_reviews_model
results: []
---
# Book Reviews Classification Model
## Model Description
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the amazon-reviews-2023 dataset for classifying book reviews into star ratings (1-5).
## Model Details
- **Task**: Single-label Text Classification
- **Input**: Book review text
- **Output**: Star rating (1-5)
## Performance Metrics
- Accuracy: 0.7537
- Evaluation Loss: 0.7654
## Training Hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3.0
## Framework Versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
## Intended Uses
Classify book reviews into star ratings based on review content.
## Limitations
- Trained on Amazon book reviews dataset
- Performance may vary on out-of-domain text
## Inference Example
```python
from transformers import pipeline
classifier = pipeline("text-classification", model="your-username/book_reviews_model")
result = classifier("This book was an incredible read!")
|