Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,135 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
base_model: google/gemma-2b
|
4 |
+
model-index:
|
5 |
+
- name: Octopus-V2-2B
|
6 |
+
results: []
|
7 |
+
tags:
|
8 |
+
- function calling
|
9 |
+
- on-device language model
|
10 |
+
- android
|
11 |
+
inference: false
|
12 |
+
space: false
|
13 |
+
spaces: false
|
14 |
+
language:
|
15 |
+
- en
|
16 |
+
---
|
17 |
+
|
18 |
+
# Quantized Octopus V2: On-device language model for super agent
|
19 |
+
|
20 |
+
This repo includes two types of quantized models: **GGUF** and **AWQ**, for ourOctopus V2 model at [NexaAIDev/Octopus-v2](https://huggingface.co/NexaAIDev/Octopus-v2)
|
21 |
+
|
22 |
+
|
23 |
+
# GGUF Qauntization
|
24 |
+
|
25 |
+
## Run with [Ollama](https://github.com/ollama/ollama)
|
26 |
+
|
27 |
+
```bash
|
28 |
+
ollama run NexaAIDev/octopus-v2-Q4_K_M
|
29 |
+
```
|
30 |
+
|
31 |
+
Input example:
|
32 |
+
|
33 |
+
```json
|
34 |
+
def get_trending_news(category=None, region='US', language='en', max_results=5):
|
35 |
+
"""
|
36 |
+
Fetches trending news articles based on category, region, and language.
|
37 |
+
|
38 |
+
Parameters:
|
39 |
+
- category (str, optional): News category to filter by, by default use None for all categories. Optional to provide.
|
40 |
+
- region (str, optional): ISO 3166-1 alpha-2 country code for region-specific news, by default, uses 'US'. Optional to provide.
|
41 |
+
- language (str, optional): ISO 639-1 language code for article language, by default uses 'en'. Optional to provide.
|
42 |
+
- max_results (int, optional): Maximum number of articles to return, by default, uses 5. Optional to provide.
|
43 |
+
|
44 |
+
Returns:
|
45 |
+
- list[str]: A list of strings, each representing an article. Each string contains the article's heading and URL.
|
46 |
+
"""
|
47 |
+
```
|
48 |
+
|
49 |
+
# AWQ Quantization
|
50 |
+
|
51 |
+
Input Python example:
|
52 |
+
|
53 |
+
```python
|
54 |
+
from awq import AutoAWQForCausalLM
|
55 |
+
from transformers import AutoTokenizer
|
56 |
+
from transformers import AutoTokenizer, GemmaForCausalLM
|
57 |
+
import torch
|
58 |
+
import time
|
59 |
+
import numpy as np
|
60 |
+
|
61 |
+
def inference(input_text):
|
62 |
+
|
63 |
+
tokens = tokenizer(
|
64 |
+
input_text,
|
65 |
+
return_tensors='pt'
|
66 |
+
).input_ids.cuda()
|
67 |
+
|
68 |
+
start_time = time.time()
|
69 |
+
generation_output = model.generate(
|
70 |
+
tokens,
|
71 |
+
do_sample=True,
|
72 |
+
temperature=0.7,
|
73 |
+
top_p=0.95,
|
74 |
+
top_k=40,
|
75 |
+
max_new_tokens=512
|
76 |
+
)
|
77 |
+
end_time = time.time()
|
78 |
+
|
79 |
+
res = tokenizer.decode(generation_output[0])
|
80 |
+
res = res.split(input_text)
|
81 |
+
latency = end_time - start_time
|
82 |
+
output_tokens = tokenizer.encode(res)
|
83 |
+
num_output_tokens = len(output_tokens)
|
84 |
+
throughput = num_output_tokens / latency
|
85 |
+
|
86 |
+
return {"output": res[-1], "latency": latency, "throughput": throughput}
|
87 |
+
|
88 |
+
|
89 |
+
model_id = "path/to/Octopus-v2-AWQ"
|
90 |
+
model = AutoAWQForCausalLM.from_quantized(model_id, fuse_layers=True,
|
91 |
+
trust_remote_code=False, safetensors=True)
|
92 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=False)
|
93 |
+
|
94 |
+
prompts = ["Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Can you take a photo using the back camera and save it to the default location? \n\nResponse:"]
|
95 |
+
|
96 |
+
avg_throughput = []
|
97 |
+
for prompt in prompts:
|
98 |
+
out = inference(prompt)
|
99 |
+
avg_throughput.append(out["throughput"])
|
100 |
+
print("nexa model result:\n", out["output"])
|
101 |
+
|
102 |
+
print("avg throughput:", np.mean(avg_throughput))
|
103 |
+
```
|
104 |
+
|
105 |
+
## Quantized GGUF & AWQ Models
|
106 |
+
|
107 |
+
| Name | Quant method | Bits | Size | Response (t/s) | Use Cases |
|
108 |
+
| ---------------------- | ------------ | ---- | -------- | -------------- | ----------------------------------- |
|
109 |
+
| Octopus-v2-AWQ | AWQ | 4 | 3.00 GB | 63.83 | fast, high quality, recommended |
|
110 |
+
| Octopus-v2-Q2_K.gguf | Q2_K | 2 | 1.16 GB | 57.81 | fast but high loss, not recommended |
|
111 |
+
| Octopus-v2-Q3_K.gguf | Q3_K | 3 | 1.38 GB | 57.81 | extremely not recommended |
|
112 |
+
| Octopus-v2-Q3_K_S.gguf | Q3_K_S | 3 | 1.19 GB | 52.13 | extremely not recommended |
|
113 |
+
| Octopus-v2-Q3_K_M.gguf | Q3_K_M | 3 | 1.38 GB | 58.67 | moderate loss, not very recommended |
|
114 |
+
| Octopus-v2-Q3_K_L.gguf | Q3_K_L | 3 | 1.47 GB | 56.92 | not very recommended |
|
115 |
+
| Octopus-v2-Q4_0.gguf | Q4_0 | 4 | 1.55 GB | 68.80 | moderate speed, recommended |
|
116 |
+
| Octopus-v2-Q4_1.gguf | Q4_1 | 4 | 1.68 GB | 68.09 | moderate speed, recommended |
|
117 |
+
| Octopus-v2-Q4_K.gguf | Q4_K | 4 | 1.63 GB | 64.70 | moderate speed, recommended |
|
118 |
+
| Octopus-v2-Q4_K_S.gguf | Q4_K_S | 4 | 1.56 GB | 62.16 | fast and accurate, very recommended |
|
119 |
+
| Octopus-v2-Q4_K_M.gguf | Q4_K_M | 4 | 1.63 GB | 64.74 | fast, recommended |
|
120 |
+
| Octopus-v2-Q5_0.gguf | Q5_0 | 5 | 1.80 GB | 64.80 | fast, recommended |
|
121 |
+
| Octopus-v2-Q5_1.gguf | Q5_1 | 5 | 1.92 GB | 63.42 | very big, prefer Q4 |
|
122 |
+
| Octopus-v2-Q5_K.gguf | Q5_K | 5 | 1.84 GB | 61.28 | big, recommended |
|
123 |
+
| Octopus-v2-Q5_K_S.gguf | Q5_K_S | 5 | 1.80 GB | 62.16 | big, recommended |
|
124 |
+
| Octopus-v2-Q5_K_M.gguf | Q5_K_M | 5 | 1.71 GB | 61.54 | big, recommended |
|
125 |
+
| Octopus-v2-Q6_K.gguf | Q6_K | 6 | 2.06 GB | 55.94 | very big, not very recommended |
|
126 |
+
| Octopus-v2-Q8_0.gguf | Q8_0 | 8 | 2.67 GB | 56.35 | very big, not very recommended |
|
127 |
+
| Octopus-v2-f16.gguf | f16 | 16 | 5.02 GB | 36.27 | extremely big |
|
128 |
+
| Octopus-v2.gguf | | | 10.00 GB | | |
|
129 |
+
|
130 |
+
_Quantized with llama.cpp_
|
131 |
+
|
132 |
+
|
133 |
+
**Acknowledgement**:
|
134 |
+
We sincerely thank our community members, [Mingyuan](https://huggingface.co/ThunderBeee), [Zoey](https://huggingface.co/ZY6), [Brian](https://huggingface.co/JoyboyBrian), [Perry](https://huggingface.co/PerryCheng614), [Qi](https://huggingface.co/qiqiWav), [David](https://huggingface.co/Davidqian123) for their extraordinary contributions to this quantization effort.
|
135 |
+
|