--- license: cc-by-nc-4.0 base_model: google/gemma-2b model-index: - name: Octopus-V2-2B results: [] tags: - function calling - on-device language model - android inference: false space: false spaces: false language: - en --- # Quantized Octopus V2: On-device language model for super agent This repo includes two types of quantized models: **GGUF** and **AWQ**, for our Octopus V2 model at [NexaAIDev/Octopus-v2](https://huggingface.co/NexaAIDev/Octopus-v2)

nexa-octopus

# GGUF Qauntization Run with [Ollama](https://github.com/ollama/ollama) ```bash ollama run NexaAIDev/octopus-v2-Q4_K_M ``` # AWQ Quantization Python example: ```python from awq import AutoAWQForCausalLM from transformers import AutoTokenizer, GemmaForCausalLM import torch import time import numpy as np def inference(input_text): tokens = tokenizer( input_text, return_tensors='pt' ).input_ids.cuda() start_time = time.time() generation_output = model.generate( tokens, do_sample=True, temperature=0.7, top_p=0.95, top_k=40, max_new_tokens=512 ) end_time = time.time() res = tokenizer.decode(generation_output[0]) res = res.split(input_text) latency = end_time - start_time output_tokens = tokenizer.encode(res) num_output_tokens = len(output_tokens) throughput = num_output_tokens / latency return {"output": res[-1], "latency": latency, "throughput": throughput} model_id = "path/to/Octopus-v2-AWQ" model = AutoAWQForCausalLM.from_quantized(model_id, fuse_layers=True, trust_remote_code=False, safetensors=True) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=False) prompts = ["Below is the query from the users, please call the correct function and generate the parameters to call the function.\n\nQuery: Can you take a photo using the back camera and save it to the default location? \n\nResponse:"] avg_throughput = [] for prompt in prompts: out = inference(prompt) avg_throughput.append(out["throughput"]) print("nexa model result:\n", out["output"]) print("avg throughput:", np.mean(avg_throughput)) ``` # Quantized GGUF & AWQ Models Benchmark | Name | Quant method | Bits | Size | Response (t/s) | Use Cases | | ---------------------- | ------------ | ---- | -------- | -------------- | ----------------------------------- | | Octopus-v2-AWQ | AWQ | 4 | 3.00 GB | 63.83 | fast, high quality, recommended | | Octopus-v2-Q2_K.gguf | Q2_K | 2 | 1.16 GB | 57.81 | fast but high loss, not recommended | | Octopus-v2-Q3_K.gguf | Q3_K | 3 | 1.38 GB | 57.81 | extremely not recommended | | Octopus-v2-Q3_K_S.gguf | Q3_K_S | 3 | 1.19 GB | 52.13 | extremely not recommended | | Octopus-v2-Q3_K_M.gguf | Q3_K_M | 3 | 1.38 GB | 58.67 | moderate loss, not very recommended | | Octopus-v2-Q3_K_L.gguf | Q3_K_L | 3 | 1.47 GB | 56.92 | not very recommended | | Octopus-v2-Q4_0.gguf | Q4_0 | 4 | 1.55 GB | 68.80 | moderate speed, recommended | | Octopus-v2-Q4_1.gguf | Q4_1 | 4 | 1.68 GB | 68.09 | moderate speed, recommended | | Octopus-v2-Q4_K.gguf | Q4_K | 4 | 1.63 GB | 64.70 | moderate speed, recommended | | Octopus-v2-Q4_K_S.gguf | Q4_K_S | 4 | 1.56 GB | 62.16 | fast and accurate, very recommended | | Octopus-v2-Q4_K_M.gguf | Q4_K_M | 4 | 1.63 GB | 64.74 | fast, recommended | | Octopus-v2-Q5_0.gguf | Q5_0 | 5 | 1.80 GB | 64.80 | fast, recommended | | Octopus-v2-Q5_1.gguf | Q5_1 | 5 | 1.92 GB | 63.42 | very big, prefer Q4 | | Octopus-v2-Q5_K.gguf | Q5_K | 5 | 1.84 GB | 61.28 | big, recommended | | Octopus-v2-Q5_K_S.gguf | Q5_K_S | 5 | 1.80 GB | 62.16 | big, recommended | | Octopus-v2-Q5_K_M.gguf | Q5_K_M | 5 | 1.71 GB | 61.54 | big, recommended | | Octopus-v2-Q6_K.gguf | Q6_K | 6 | 2.06 GB | 55.94 | very big, not very recommended | | Octopus-v2-Q8_0.gguf | Q8_0 | 8 | 2.67 GB | 56.35 | very big, not very recommended | | Octopus-v2-f16.gguf | f16 | 16 | 5.02 GB | 36.27 | extremely big | | Octopus-v2.gguf | | | 10.00 GB | | | _Quantized with llama.cpp_ **Acknowledgement**: We sincerely thank our community members, [Mingyuan](https://huggingface.co/ThunderBeee), [Zoey](https://huggingface.co/ZY6), [Brian](https://huggingface.co/JoyboyBrian), [Perry](https://huggingface.co/PerryCheng614), [Qi](https://huggingface.co/qiqiWav), [David](https://huggingface.co/Davidqian123) for their extraordinary contributions to this quantization effort.