File size: 3,185 Bytes
b695973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Qwen2-Audio

<img src="https://cdn-uploads.huggingface.co/production/uploads/6618e0424dbef6bd3c72f89a/ThcKJj7LcWCZPwN1So05f.png" alt="Example" style="width:700px;"/>

Qwen2-Audio is a SOTA small-scale multimodal model that handles audio and text inputs, allowing you to have voice interactions without ASR modules. Qwen2-Audio supports English, Chinese, and major European languages,and also provides robust audio analysis for local use cases like:
- Speaker identification and response
- Speech translation and transcription
- Mixed audio and noise detection
- Music and sound analysis

## We're bringing Qwen2-Audio to edge devices with Nexa SDK, offering various quantization options.
- Voice Chat: Users can freely engage in voice interactions with Qwen2-Audio without text input.
- Audio Analysis: Users can provide both audio and text instructions for analysis during the interaction.
### Demo

<video controls autoplay src="https://cdn-uploads.huggingface.co/production/uploads/6618e0424dbef6bd3c72f89a/02XDwJe3bhZHYptor-b2_.mp4"></video>

## How to Run Locally On-Device

In the following, we demonstrate how to run Qwen2-Audio locally on your device.

**Step 1: Install Nexa-SDK (local on-device inference framework)**

[Install Nexa-SDK](https://github.com/NexaAI/nexa-sdk?tab=readme-ov-file#install-option-1-executable-installer)

> Nexa-SDK is a open-sourced, local on-device inference framework, supporting text generation, image generation, vision-language models (VLM), audio-language models, speech-to-text (ASR), and text-to-speech (TTS) capabilities. Installable via Python Package or Executable Installer.

**Step 2: Then run the following code in your terminal to run with local streamlit UI**

```bash
nexa run qwen2audio -st
```

**or to use in terminal**:

```bash
nexa run qwen2audio
```

### Usage Instructions

For terminal:
1. Drag and drop your audio file into the terminal (or enter file path on Linux)
2. Add text prompt to guide analysis or leave empty for direct voice input

### System Requirements

💻 **RAM Requirements**:
- Default q4_K_M version requires 4.2GB of RAM
- Check the RAM requirements table for different quantization versions

🎵 **Audio Format**:
- Optimal: 16kHz `.wav` format
- Other formats and sample rates are supported with automatic conversion

## Use Cases

### Voice Chat
- Answer daily questions
- Offer suggestions
- Speaker identification and response
- Speech translation
- Detecting background noise and responding accordingly

### Audio Analysis
- Information Extraction
- Audio summary
- Speech Transcription and Expansion
- Mixed audio and noise detection
- Music and sound analysis

## Performance Benchmark

<img src="https://cdn-uploads.huggingface.co/production/uploads/6618e0424dbef6bd3c72f89a/lax8bLpR5uK2_Za0G6G3j.png" alt="Example" style="width:700px;"/>

Results demonstrate that Qwen2-Audio significantly outperforms either previous SOTAs or Qwen-Audio across all tasks.

<img src="https://cdn-uploads.huggingface.co/production/uploads/6618e0424dbef6bd3c72f89a/2vACK_gD_MAuZ7Hn4Yfiv.png" alt="Example" style="width:700px;"/>


## Follow Nexa AI to run more models on-device
[Website](https://nexa.ai/)