File size: 5,110 Bytes
c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 45cbc42 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 c3e1d5b 39b1af2 618a21c 39b1af2 e11935f 39b1af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
---
license: apache-2.0
datasets:
- argilla/distilabel-intel-orca-dpo-pairs
language:
- bg
- ca
- cs
- da
- de
- en
- es
- fr
- hr
- hu
- it
- nl
- pl
- pt
- ro
- ru
- sl
- sr
- sv
- uk
library_name: transformers
widget:
- text: |
<bos><start_of_turn>system
You are a helpful AI assistant.<end_of_turn>
<start_of_turn>user
What is the meaning of life in the current time?<end_of_turn>
<start_of_turn>model
---
![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/YXqUXFjX8uIJT-mdOnM1h.png)
```
reference data model:
datasets:
link: https://huggingface.co/datasets/argilla/distilabel-intel-orca-dpo-pairs
link dataset format gemma chatml: https://huggingface.co/datasets/NickyNicky/distilabel-intel-orca-dpo-pairs_gemma_chatml
model:
- google/gemma-2b-it
Link base:
https://huggingface.co/google/gemma-2b-it
Link fine-tune:
https://huggingface.co/NickyNicky/gemma-2b-it_oasst2_chatML_Cluster_2_V1
Epoch: 1
Future experts: 4
Eval model:
- link:
soon
```
## Loss: train/loss 0.0664
## Re/Accuracies: train/rewards/accuracies 0.9642857313156128
```Python
!python -m pip install --upgrade pip
!pip install "torch>=2.1.1" -U
# !pip install torchaudio==2.2.0
!pip install -q datasets trl peft bitsandbytes sentencepiece wandb
!pip install -q accelerate safetensors deepspeed
!pip install -q scipy ninja -U
!pip install -q -U transformers==4.38.0
```
## Version
```py
import torch
torch.__version__
#OUTPUTS: ('2.2.0+cu121' )
```
## How to use
```py
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
TrainingArguments,
pipeline,
logging,
GenerationConfig,
TextIteratorStreamer,
)
from transformers import StoppingCriteria, StoppingCriteriaList
import torch
model_id='NickyNicky/gemma-2b-it_chatML_distilabel-intel-orca-dpo-pairs_v1'
model = AutoModelForCausalLM.from_pretrained(model_id,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
# load_in_4bit=True,
# low_cpu_mem_usage= True,
)
max_length=2155
print("max_length",max_length)
tokenizer = AutoTokenizer.from_pretrained(model_id,
# use_fast = False,
max_length=max_length,)
class ListOfTokensStoppingCriteria(StoppingCriteria):
"""
Clase para definir un criterio de parada basado en una lista de tokens específicos.
"""
def __init__(self, tokenizer, stop_tokens):
self.tokenizer = tokenizer
# Codifica cada token de parada y guarda sus IDs en una lista
self.stop_token_ids_list = [tokenizer.encode(stop_token, add_special_tokens=False) for stop_token in stop_tokens]
def __call__(self, input_ids, scores, **kwargs):
# Verifica si los últimos tokens generados coinciden con alguno de los conjuntos de tokens de parada
for stop_token_ids in self.stop_token_ids_list:
len_stop_tokens = len(stop_token_ids)
if len(input_ids[0]) >= len_stop_tokens:
if input_ids[0, -len_stop_tokens:].tolist() == stop_token_ids:
return True
return False
# Uso del criterio de parada personalizado
stop_tokens = ["<end_of_turn>"] # Lista de tokens de parada
# Inicializa tu criterio de parada con el tokenizer y la lista de tokens de parada
stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens)
# Añade tu criterio de parada a una StoppingCriteriaList
stopping_criteria_list = StoppingCriteriaList([stopping_criteria])
#EXAMPLE #1
txt="""<bos><start_of_turn>system
You are a helpful AI assistant.<end_of_turn>
<start_of_turn>user
Me dices los diferentes tipos de reciclaje que suelen existir en las ciudades europeas<end_of_turn>
<start_of_turn>model
"""
#EXAMPLE #2
txt="""<bos><start_of_turn>system
You are a helpful AI assistant.<end_of_turn>
<start_of_turn>user
What is the meaning of life in the current time?<end_of_turn>
<start_of_turn>model
"""
inputs = tokenizer.encode(txt,
return_tensors="pt",
add_special_tokens=False).to("cuda:0")
max_new_tokens=1000
generation_config = GenerationConfig(
max_new_tokens=max_new_tokens,
temperature=0.1, # .82 .2
#top_p=0.9,
top_k=50,
repetition_penalty=1.1,
do_sample=True,
)
outputs = model.generate(generation_config=generation_config,
input_ids=inputs,
stopping_criteria=stopping_criteria_list,)
tokenizer.decode(outputs[0], skip_special_tokens=False) #True
```
|