NickyNicky commited on
Commit
23db7d8
1 Parent(s): df368b9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +225 -170
README.md CHANGED
@@ -1,201 +1,256 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
 
78
- ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
 
 
 
 
 
 
 
 
 
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
160
 
161
- [More Information Needed]
 
 
162
 
163
- #### Hardware
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
170
 
171
- ## Citation [optional]
 
 
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
 
 
 
 
 
 
 
 
 
188
 
189
- ## More Information [optional]
190
 
191
- [More Information Needed]
 
 
 
 
 
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
 
 
201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
 
2
 
 
3
 
 
4
 
5
+ ---
6
+ license: apache-2.0
7
+ datasets:
8
+ - NickyNicky/aya_dataset_multilingual_chatml_gemma_response_json
9
+ - CohereForAI/aya_dataset
10
+ model:
11
+ - NickyNicky/gemma-2b-it_oasst2_chatML_Cluster_2_V1
12
+ language:
13
+ - bg
14
+ - ca
15
+ - cs
16
+ - da
17
+ - de
18
+ - en
19
+ - es
20
+ - fr
21
+ - hr
22
+ - hu
23
+ - it
24
+ - nl
25
+ - pl
26
+ - pt
27
+ - ro
28
+ - ru
29
+ - sl
30
+ - sr
31
+ - sv
32
+ - uk
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
+ library_name: transformers
 
 
 
 
35
 
36
+ widget:
37
+ - text: |
38
+ <bos><start_of_turn>system
39
+ You are a helpful AI assistant.
40
+ lista de codigos linguisticos disponibles: ["es", "en"].<end_of_turn>
41
+ <start_of_turn>user
42
+ escribe una historia de 100 palabras<end_of_turn>
43
+ <start_of_turn>model\n
44
+
45
+ ---
46
 
 
47
 
48
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/YXqUXFjX8uIJT-mdOnM1h.png)
49
 
50
+ ```
51
+ reference data model:
52
 
53
+ datasets:
54
+ - lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
55
+ link: https://huggingface.co/datasets/NickyNicky/oasst2_clusters
56
 
57
+ model:
58
+ - google/gemma-2b-it
59
+ Link:
60
+ https://huggingface.co/google/gemma-2b-it
61
 
62
+ base fine tune: NickyNicky/gemma-2b-it_oasst2_chatML_Cluster_2_V1
63
 
64
+ Epoch: 3
65
 
66
+ future experts: 7
67
 
68
+ Eval model:
69
+ - link:
70
+ soon
71
 
72
+ ```
73
 
 
74
 
75
+ ## train/loss 0.95
76
 
77
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/641b435ba5f876fe30c5ae0a/T_Din2d6NjAt75ImpSOrs.png)
78
 
 
79
 
80
+ ##
81
 
 
82
 
83
+ ```Python
84
+ !python -m pip install --upgrade pip
85
+ !pip install "torch>=2.1.1" -U
86
+ !pip install torchaudio==2.2.0
87
+ !pip install -q datasets trl peft bitsandbytes sentencepiece wandb
88
+ !pip install -q accelerate safetensors deepspeed
89
+ !pip install -q scipy ninja -U
90
+ !pip install -q -U transformers==4.38.0
91
+ !pip install flash-attn==2.5.5 --no-build-isolation
92
+ ```
93
 
 
94
 
95
+ ## Version
96
+ ```py
97
+ import torch
98
+ torch.__version__
99
+ #OUTPUTS: ('2.2.0+cu121' )
100
+ ```
101
 
102
+ ## How to use
103
+ ```py
104
 
105
+ from transformers import (
106
+ AutoModelForCausalLM,
107
+ AutoTokenizer,
108
+ BitsAndBytesConfig,
109
+ HfArgumentParser,
110
+ TrainingArguments,
111
+ pipeline,
112
+ logging,
113
+ GenerationConfig,
114
+ TextIteratorStreamer,
115
+ )
116
 
117
+ from transformers import StoppingCriteria, StoppingCriteriaList
118
 
119
+ import torch
120
 
121
+ model_id='NickyNicky/gemma-2b-it_oasst2_all_chatML_V1'
122
 
123
+ model = AutoModelForCausalLM.from_pretrained(model_id,
124
+ device_map="auto",
125
+ trust_remote_code=True,
126
+ torch_dtype=torch.bfloat16,
127
+ attn_implementation="flash_attention_2",
128
+ # load_in_4bit=True,
129
+ # low_cpu_mem_usage= True,
130
+
131
+ )
132
+
133
+ max_length=2048
134
+ print("max_length",max_length)
135
+
136
+
137
+ tokenizer = AutoTokenizer.from_pretrained(model_id,
138
+ # use_fast = False,
139
+ max_length=max_length,)
140
+
141
+
142
+ class ListOfTokensStoppingCriteria(StoppingCriteria):
143
+ """
144
+ Clase para definir un criterio de parada basado en una lista de tokens específicos.
145
+ """
146
+ def __init__(self, tokenizer, stop_tokens):
147
+ self.tokenizer = tokenizer
148
+ # Codifica cada token de parada y guarda sus IDs en una lista
149
+ self.stop_token_ids_list = [tokenizer.encode(stop_token, add_special_tokens=False) for stop_token in stop_tokens]
150
+
151
+ def __call__(self, input_ids, scores, **kwargs):
152
+ # Verifica si los últimos tokens generados coinciden con alguno de los conjuntos de tokens de parada
153
+ for stop_token_ids in self.stop_token_ids_list:
154
+ len_stop_tokens = len(stop_token_ids)
155
+ if len(input_ids[0]) >= len_stop_tokens:
156
+ if input_ids[0, -len_stop_tokens:].tolist() == stop_token_ids:
157
+ return True
158
+ return False
159
+
160
+ # Uso del criterio de parada personalizado
161
+ stop_tokens = ["<end_of_turn>"] # Lista de tokens de parada
162
+
163
+ # Inicializa tu criterio de parada con el tokenizer y la lista de tokens de parada
164
+ stopping_criteria = ListOfTokensStoppingCriteria(tokenizer, stop_tokens)
165
+
166
+ # Añade tu criterio de parada a una StoppingCriteriaList
167
+ stopping_criteria_list = StoppingCriteriaList([stopping_criteria])
168
+
169
+
170
+ # improves control of responses in different languages.
171
+ # trainer language codes: ["es", "en", "fr", "de"]
172
+ input_code= "es"
173
+ target_code= "en"
174
+
175
+
176
+ #EXAMPLE #1
177
+ input_text = f"""<bos><start_of_turn>system
178
+ You are a helpful AI assistant.<end_of_turn>
179
+ <start_of_turn>user
180
+ **News:**
181
+ he Texas Blockchain Council (TBC) and Bitcoin mining firm Riot Platforms have won a favorable ruling from a United States District Judge in a lawsuit against several United States energy officials.
182
+ On February 22, Cointelegraph reported that the TBC and Riot alleged the U.S. Department of Energy, Energy Information Administration (EIA), Office of Management and Budget (OMB) and their leadership sought an “invasive” data collection from cryptocurrency miners.
183
+ According to a February 23 filing in the United States District Court for the Western District of Texas, the TBC and Riot convinced the judge that irreversible harm would happen without a temporary restraining order (TRO) against further data collection.
184
+ As a result, the court enforced a TRO which prohibits the EIA from requiring crypto miners to respond to the survey, as well as prohibiting the EIA from sharing any data that has already been received from the survey.
185
+ “The Court finds that Plaintiffs have shown through a verified complaint and supporting evidence that immediate and irreparable injury, loss, or damage will result if a TRO is not issued.”
186
+
187
+
188
+ Instruccion:
189
+ - responde en español.
190
+ - has un análisis sobre el contexto de la noticia y buscar información relevante para poder responder satisfactoriamente.
191
+ - has 5 preguntas importantes y sus respuestas.
192
+
193
+ en español responde solo en json:
194
+ ```json
195
+ {
196
+ "analisis_noticia": "",
197
+ "preguntas_respuestas": [
198
+ {
199
+ "pregunta": "",
200
+ "respuesta": ""
201
+ }
202
+ ]
203
+ }```<end_of_turn>
204
+ <start_of_turn>model
205
+ """
206
+
207
+
208
+ '''py
209
+ ### OUTPUT EXAMPLE
210
+ <start_of_turn>model
211
+ {
212
+ "analisis_noticia": "Texas Blockchain Council and Bitcoin mining firm Riot Platforms have won a favorable ruling from a United States District Judge in a lawsuit against several United States energy officials.",
213
+ "preguntas_respuestas": [
214
+ {
215
+ "pregunta": "¿Cuál es el objetivo principal del Texas Blockchain Council?",
216
+ "respuesta": "El objetivo principal del Texas Blockchain Council es promover el uso de las tecnologías blockchain en Texas y en todo el mundo."
217
+ },
218
+ {
219
+ "pregunta": "¿Qué tipo de tecnología blockchain se utiliza más comúnmente en Texas?",
220
+ "respuesta": "La tecnología blockchain utilizada más comúnmente en Texas es la criptomoneda Bitcoin."
221
+ },
222
+ {
223
+ "pregunta": "¿Cómo se utilizan las criptomonedas en el ámbito empresarial y gubernamental en Texas?",
224
+ "respuesta": "Las criptomonedas son utilizadas por empresas y gobiernos gubernamentales en Texas para mejorar la eficiencia y seguridad en el proceso de pago."
225
+ },
226
+ {
227
+ "pregunta": "¿Qué medidas están siendo tomadas para proteger los derechos de propiedad intelectual y la privacidad de los ciudadanos en Texas?",
228
+ "respuesta": "Texas está trabajando junto con otras entidades gubernamentales y organizaciones empresariales para desarrollar leyes que protegen los derechos de propiedad intelectual y la privacidad de los ciudadanos."
229
+ },
230
+ {
231
+ "pregunta": "¿Cómo se espera que las nuevas tecnologías de blockchain impacten el futuro económico y social de Texas?",
232
+ "respuesta": "Se espera que estas nuevas tecnologías de blockchain tengan un impacto positivo en el futuro económico y social de Texas al permitir una mayor transparencia, eficiencia y seguridad en el sistema financiero."
233
+ }
234
+ ]
235
+ }<end_of_turn>
236
+ '''
237
+
238
+
239
+
240
+ inputs = tokenizer.encode(txt,
241
+ return_tensors="pt",
242
+ add_special_tokens=False).to("cuda:0")
243
+ max_new_tokens=700
244
+ generation_config = GenerationConfig(
245
+ max_new_tokens=max_new_tokens,
246
+ temperature=0.32,
247
+ #top_p=0.9,
248
+ top_k=45,
249
+ repetition_penalty=1., #1.1
250
+ do_sample=True,
251
+ )
252
+ outputs = model.generate(generation_config=generation_config,
253
+ input_ids=inputs,
254
+ stopping_criteria=stopping_criteria_list,)
255
+ tokenizer.decode(outputs[0], skip_special_tokens=False) #True
256
+ ```