Delete datasetChunker.py
Browse files- datasetChunker.py +0 -99
datasetChunker.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
from transformers import AutoTokenizer
|
2 |
-
import jsonlines
|
3 |
-
import random
|
4 |
-
import os
|
5 |
-
|
6 |
-
tokenizer = AutoTokenizer.from_pretrained("NilanE/tinyllama-relora-merge")
|
7 |
-
|
8 |
-
max_seq_len = 2048 # max context length
|
9 |
-
|
10 |
-
prompt = "Translate this from Japanese to English:\n### JAPANESE: \n### ENGLISH: </s>" # insert SFT prompt to add to token count
|
11 |
-
|
12 |
-
input_file_path = "dataset-parallel-complete.jsonl"
|
13 |
-
|
14 |
-
output_file_path = input_file_path.split('.')[0] + "-chunked." + input_file_path.split('.')[1]
|
15 |
-
promptTokens = len(tokenizer.tokenize(prompt))
|
16 |
-
|
17 |
-
def load_jsonl(file_path):
|
18 |
-
data = []
|
19 |
-
with jsonlines.open(file_path) as reader:
|
20 |
-
for entry in reader:
|
21 |
-
source = entry['src'].replace('</s>', '').strip()
|
22 |
-
target = entry['trg'].replace('</s>', '').strip()
|
23 |
-
data.append([source, target])
|
24 |
-
return data
|
25 |
-
|
26 |
-
def save_jsonl(file_path, data):
|
27 |
-
with jsonlines.open(file_path, 'w') as writer:
|
28 |
-
writer.write_all(data)
|
29 |
-
|
30 |
-
chunks = []
|
31 |
-
|
32 |
-
data = load_jsonl(input_file_path)
|
33 |
-
|
34 |
-
#tolerance
|
35 |
-
max_seq_len -= 10
|
36 |
-
|
37 |
-
skippedDocs = 0
|
38 |
-
|
39 |
-
for doc in data:
|
40 |
-
|
41 |
-
src_lines = doc[0].split('\n')
|
42 |
-
trg_lines = doc[1].split('\n')
|
43 |
-
|
44 |
-
out_src = []
|
45 |
-
out_trg = []
|
46 |
-
tokenCount = 0
|
47 |
-
lastTokenCount = 0
|
48 |
-
longLines = 0
|
49 |
-
|
50 |
-
try:
|
51 |
-
for x in range(len(src_lines)):
|
52 |
-
out_src.append(src_lines[x])
|
53 |
-
out_trg.append(trg_lines[x])
|
54 |
-
out_src_string = "\n".join(out_src)
|
55 |
-
trg_src_string = "\n".join(out_trg)
|
56 |
-
tokenCount = len(tokenizer.tokenize(out_src_string.strip() + trg_src_string.strip())) + promptTokens
|
57 |
-
if tokenCount-lastTokenCount < max_seq_len-1: # avoid lines > max line length
|
58 |
-
if tokenCount > max_seq_len-1:
|
59 |
-
src_end = out_src.pop()
|
60 |
-
trg_end = out_trg.pop()
|
61 |
-
out_src_string = "\n".join(out_src)
|
62 |
-
trg_src_string = "\n".join(out_trg)
|
63 |
-
data = {
|
64 |
-
'src' : out_src_string.strip(),
|
65 |
-
'trg' : trg_src_string.strip()
|
66 |
-
}
|
67 |
-
chunks.append(data)
|
68 |
-
out_src = [src_end]
|
69 |
-
out_trg = [trg_end]
|
70 |
-
elif x+1 == len(src_lines): #and len(out_src) > 2:
|
71 |
-
data = {
|
72 |
-
'src' : out_src_string.strip(),
|
73 |
-
'trg' : trg_src_string.strip()
|
74 |
-
}
|
75 |
-
chunks.append(data)
|
76 |
-
else:
|
77 |
-
# remove offending line > max_seq_len
|
78 |
-
out_src.pop()
|
79 |
-
out_trg.pop()
|
80 |
-
out_src_string = "\n".join(out_src)
|
81 |
-
trg_src_string = "\n".join(out_trg)
|
82 |
-
tokenCount = len(tokenizer.tokenize(prompt + out_src_string.strip() + trg_src_string.strip()))
|
83 |
-
longLines += 1
|
84 |
-
|
85 |
-
lastTokenCount = tokenCount
|
86 |
-
except:
|
87 |
-
skippedDocs += 1
|
88 |
-
|
89 |
-
|
90 |
-
random.shuffle(chunks)
|
91 |
-
|
92 |
-
print(f"LINES LONGER THAN MAX SEQUENCE LENTH: {longLines}")
|
93 |
-
print(f"SKIPPED DOCS: {skippedDocs}")
|
94 |
-
|
95 |
-
# Save the randomized data to a new JSONL file
|
96 |
-
if os.path.exists(output_file_path):
|
97 |
-
os.remove(output_file_path)
|
98 |
-
save_jsonl(output_file_path, chunks)
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|