File size: 2,033 Bytes
2eac4e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: t5-small
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: t5-small-summarization-samsum
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-small-summarization-samsum

This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7907
- Rouge1: 0.4318
- Rouge2: 0.2005
- Rougel: 0.3629
- Rougelsum: 0.3629
- Gen Len: 16.8971

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.1074        | 0.54  | 500  | 1.9230          | 0.4011 | 0.182  | 0.3418 | 0.3417    | 15.7439 |
| 2.0526        | 1.09  | 1000 | 1.8559          | 0.4122 | 0.1841 | 0.3478 | 0.348     | 16.386  |
| 2.0075        | 1.63  | 1500 | 1.8193          | 0.4273 | 0.1955 | 0.3552 | 0.3551    | 16.8554 |
| 1.97          | 2.17  | 2000 | 1.8086          | 0.4222 | 0.1922 | 0.3551 | 0.3552    | 16.761  |
| 1.931         | 2.72  | 2500 | 1.7907          | 0.4318 | 0.2005 | 0.3629 | 0.3629    | 16.8971 |


### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1