|
--- |
|
license: cc-by-nc-sa-4.0 |
|
datasets: |
|
- NorGLM/NO-CNN-DailyMail |
|
language: |
|
- 'no' |
|
pipeline_tag: summarization |
|
--- |
|
|
|
# Model Card |
|
|
|
NorGPT-3B-summarization-peft is trained on top of [NorGPT-3B](https://huggingface.co/NorGLM/NorGPT-3B) model using RLHF strategy on [NO-CNN-DailyMail](https://huggingface.co/datasets/NorGLM/NO-CNN-DailyMail) dataset. |
|
|
|
Different from step 2 in the original RLHF, we trained the reward model by estimating the semantic similarity between the candidate generated text and the human annotated summary (golden summary) using the [NorBERT](https://huggingface.co/ltg/norbert) model. Generated summaries with higher cosine similarity to the golden summary will be ranked higher in the training of the reward model. |
|
|
|
Prompt format: |
|
``` |
|
Summarise the article:\\n{article} |||\\n{positive_sample} |
|
``` |
|
|
|
Inference prompt: |
|
``` |
|
Summarise the article:\\n{article} |||\\n |
|
``` |
|
|
|
## Training Split |
|
We split data to train on step 1-step 3 for RLHF: |
|
| | #samples | |
|
|-------|---------------------| |
|
| step 1 | 61181 | |
|
| step 2 | 16798 | |
|
| step 3 | 9758 | |
|
|
|
## Run the Model |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
model_id = "NorGLM/NorGPT-3B-rfhl-summarization" |
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
device_map='auto', |
|
torch_dtype=torch.bfloat16 |
|
) |
|
``` |
|
|
|
## Inference on test set |
|
Load the model to evaluate on the test set of NO-CNN-DailyMail dataset: |
|
```python |
|
def generate_texts(model, tokenizer, prompts, max_seq_length=200, do_sample=True, top_p=0.95, top_k=10): |
|
# prompts are a list of news articles |
|
results = [] |
|
cnt = 0 |
|
for prompt in prompts: |
|
cnt += 1 |
|
pro_len = len(prompt.split()) |
|
if pro_len>1024: |
|
results.append('') |
|
continue |
|
|
|
prompt = 'Summarise the article:\\n' + prompt + ' |||\\n' |
|
|
|
model_inputs = tokenizer(prompt, return_tensors='pt').to(torch_device) |
|
output = model.generate(**model_inputs, do_sample=False, max_new_tokens=max_seq_length) |
|
result = tokenizer.decode(output[0], skip_special_tokens=True) |
|
result = result.split("|||\\n")[-1] |
|
results.append(result) |
|
return results |
|
|
|
print("--LOADING EVAL DATAS---") |
|
eval_data = load_dataset("NorGLM/NO-CNN-DailyMail", data_files="test.csv") |
|
prompts = eval_data['train']['article'] |
|
positive_samples = eval_data['train']['positive_sample'] |
|
|
|
print("--MAKING PREDICTIONS---") |
|
model.eval() |
|
|
|
output_file = <output file name> |
|
with torch.no_grad(): |
|
results = generate_texts(model, tokenizer, prompts) |
|
|
|
df = pd.DataFrame({'article':prompts, 'generated_text':results, 'positive_sample':positive_samples}) |
|
|
|
print("Save results to csv file...") |
|
df.to_csv(output_file) |
|
|
|
``` |
|
|
|
## Citation Information |
|
If you feel our work is helpful, please cite our paper: |
|
|
|
``` |
|
@article{liu2023nlebench+, |
|
title={NLEBench+ NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian}, |
|
author={Liu, Peng and Zhang, Lemei and Farup, Terje Nissen and Lauvrak, Even W and Ingvaldsen, Jon Espen and Eide, Simen and Gulla, Jon Atle and Yang, Zhirong}, |
|
journal={arXiv preprint arXiv:2312.01314}, |
|
year={2023} |
|
} |
|
``` |