--- license: cc-by-nc-sa-4.0 datasets: - NorGLM/NO-CNN-DailyMail language: - 'no' pipeline_tag: summarization --- # Model Card NorGPT-3B-summarization-peft is trained on top of [NorGPT-3B](https://huggingface.co/NorGLM/NorGPT-3B) model using RLHF strategy on [NO-CNN-DailyMail](https://huggingface.co/datasets/NorGLM/NO-CNN-DailyMail) dataset. Different from step 2 in the original RLHF, we trained the reward model by estimating the semantic similarity between the candidate generated text and the human annotated summary (golden summary) using the [NorBERT](https://huggingface.co/ltg/norbert) model. Generated summaries with higher cosine similarity to the golden summary will be ranked higher in the training of the reward model. Prompt format: ``` Summarise the article:\\n{article} |||\\n{positive_sample} ``` Inference prompt: ``` Summarise the article:\\n{article} |||\\n ``` ## Training Split We split data to train on step 1-step 3 for RLHF: | | #samples | |-------|---------------------| | step 1 | 61181 | | step 2 | 16798 | | step 3 | 9758 | ## Run the Model ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "NorGLM/NorGPT-3B-rfhl-summarization" tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.pad_token = tokenizer.eos_token model = AutoModelForCausalLM.from_pretrained( model_id, device_map='auto', torch_dtype=torch.bfloat16 ) ``` ## Inference on test set Load the model to evaluate on the test set of NO-CNN-DailyMail dataset: ```python def generate_texts(model, tokenizer, prompts, max_seq_length=200, do_sample=True, top_p=0.95, top_k=10): # prompts are a list of news articles results = [] cnt = 0 for prompt in prompts: cnt += 1 pro_len = len(prompt.split()) if pro_len>1024: results.append('') continue prompt = 'Summarise the article:\\n' + prompt + ' |||\\n' model_inputs = tokenizer(prompt, return_tensors='pt').to(torch_device) output = model.generate(**model_inputs, do_sample=False, max_new_tokens=max_seq_length) result = tokenizer.decode(output[0], skip_special_tokens=True) result = result.split("|||\\n")[-1] results.append(result) return results print("--LOADING EVAL DATAS---") eval_data = load_dataset("NorGLM/NO-CNN-DailyMail", data_files="test.csv") prompts = eval_data['train']['article'] positive_samples = eval_data['train']['positive_sample'] print("--MAKING PREDICTIONS---") model.eval() output_file = with torch.no_grad(): results = generate_texts(model, tokenizer, prompts) df = pd.DataFrame({'article':prompts, 'generated_text':results, 'positive_sample':positive_samples}) print("Save results to csv file...") df.to_csv(output_file) ``` ## Citation Information If you feel our work is helpful, please cite our paper: ``` @article{liu2023nlebench+, title={NLEBench+ NorGLM: A Comprehensive Empirical Analysis and Benchmark Dataset for Generative Language Models in Norwegian}, author={Liu, Peng and Zhang, Lemei and Farup, Terje Nissen and Lauvrak, Even W and Ingvaldsen, Jon Espen and Eide, Simen and Gulla, Jon Atle and Yang, Zhirong}, journal={arXiv preprint arXiv:2312.01314}, year={2023} } ```