Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,93 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: cc-by-nc-sa-4.0
|
3 |
+
datasets:
|
4 |
+
- NorGLM/NO-ConvAI2
|
5 |
+
language:
|
6 |
+
- 'no'
|
7 |
+
pipeline_tag: text-generation
|
8 |
---
|
9 |
+
|
10 |
+
# Model Card
|
11 |
+
|
12 |
+
NorLlama-3B-conversation-peft is trained on top of [NorLlama-3B](https://huggingface.co/NorGLM/NorLlama-3B) model on [NO-ConvAI2](https://huggingface.co/datasets/NorGLM/NO-ConvAI2) dataset.
|
13 |
+
|
14 |
+
Prompt format:
|
15 |
+
```
|
16 |
+
Human: {prompt} Robot: |||\n {answer}
|
17 |
+
```
|
18 |
+
|
19 |
+
Inference prompt:
|
20 |
+
```
|
21 |
+
Human: {prompt} Robot: |||\n
|
22 |
+
```
|
23 |
+
|
24 |
+
## Run the Model
|
25 |
+
```python
|
26 |
+
from peft import PeftModel, PeftConfig
|
27 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
28 |
+
import torch
|
29 |
+
from tqdm.auto import tqdm
|
30 |
+
|
31 |
+
source_model_id = "NorGLM/NorLlama-3B"
|
32 |
+
peft_model_id = "NorGLM/NorLlama-3B-conversation-peft"
|
33 |
+
|
34 |
+
config = PeftConfig.from_pretrained(peft_model_id)
|
35 |
+
model = AutoModelForCausalLM.from_pretrained(source_model_id, device_map='balanced')
|
36 |
+
|
37 |
+
tokenizer_max_len = 2048
|
38 |
+
tokenizer_config = {'pretrained_model_name_or_path': source_model_id,
|
39 |
+
'max_len': tokenizer_max_len}
|
40 |
+
tokenizer = tokenizer = AutoTokenizer.from_pretrained(**tokenizer_config)
|
41 |
+
tokenizer.pad_token = tokenizer.eos_token
|
42 |
+
|
43 |
+
model = PeftModel.from_pretrained(model, peft_model_id)
|
44 |
+
```
|
45 |
+
|
46 |
+
## Inference Example
|
47 |
+
Load the model to evaluate on the test set of NO-CNN/DailyMail dataset:
|
48 |
+
```python
|
49 |
+
def load_and_prepare_data_last_prompt(df):
|
50 |
+
""" Load and spearates last prompt from prompt """
|
51 |
+
# id, turn_id, prompt, answer
|
52 |
+
last_prompt = ["Human: " + df['prompt']
|
53 |
+
[i].split("Human:")[-1] for i in range(len(df))]
|
54 |
+
df['last_prompt'] = last_prompt
|
55 |
+
return df
|
56 |
+
|
57 |
+
def generate_text(text, max_length=200):
|
58 |
+
# generate with greedy search
|
59 |
+
model_inputs = tokenizer(text, return_attention_mask=True, return_tensors="pt",
|
60 |
+
padding=True, truncation=True, max_length=tokenizer_max_len)
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
output_tokens = model.generate(
|
64 |
+
**model_inputs, max_new_tokens=50, pad_token_id=tokenizer.eos_token_id)
|
65 |
+
|
66 |
+
text_outputs = [tokenizer.decode(
|
67 |
+
x, skip_special_tokens=True) for x in output_tokens]
|
68 |
+
|
69 |
+
return text_outputs
|
70 |
+
|
71 |
+
print("--LOADING EVAL DATAS---")
|
72 |
+
eval_data = load_dataset("NorGLM/NO-ConvAI2", data_files="test_PersonaChat_prompt.json")
|
73 |
+
prompts = eval_data['train']['prompt']
|
74 |
+
positive_samples = eval_data['train']['answer']
|
75 |
+
|
76 |
+
print("--MAKING PREDICTIONS---")
|
77 |
+
model.eval()
|
78 |
+
|
79 |
+
output_file = <output file name>
|
80 |
+
generated_text = []
|
81 |
+
|
82 |
+
for prompt in tqdm(prompts):
|
83 |
+
generated_text.append(generate_text(prompt, max_length=tokenizer_max_len))
|
84 |
+
|
85 |
+
df = pd.DataFrame({'prompts':prompts, 'generated_text':generated_text, 'positive_sample':positive_samples})
|
86 |
+
|
87 |
+
print("Save results to csv file...")
|
88 |
+
df.to_csv(output_file)
|
89 |
+
|
90 |
+
```
|
91 |
+
|
92 |
+
## Note
|
93 |
+
More training details will be released soon!
|