import torch import torch.nn as nn import math # Source: https://pytorch.org/tutorials/beginner/transformer_tutorial.html class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super().__init__() self.dropout = nn.Dropout(p=dropout) position = torch.arange(max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) pe = torch.zeros(max_len, d_model) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer("pe", pe) def forward(self, x): x = x + self.pe[:x.size(0)] return self.dropout(x) """ Same scheduler as in "Attention Is All You Need" """ class NoamScheduler(): def __init__(self, optimizer, warmup, model_size): self.epoch = 0 self.optimizer = optimizer self.warmup = warmup self.model_size = model_size def step(self): self.epoch += 1 new_lr = self.model_size**(-0.5) * min(self.epoch**(-0.5), self.epoch * self.warmup**(-1.5)) for param in self.optimizer.param_groups: param["lr"] = new_lr """ Encoders to attend sentence level features. """ class TransformerInterEncoder(nn.Module): def __init__(self, d_model, d_ff=2048, nheads=8, num_encoders=2, dropout=0.1, max_len=512): super().__init__() self.positional_enc = PositionalEncoding(d_model, dropout, max_len) self.encoders = nn.TransformerEncoder( nn.TransformerEncoderLayer(d_model=d_model, nhead=nheads, dim_feedforward=d_ff), num_layers=num_encoders ) self.layer_norm = nn.LayerNorm(d_model) self.linear = nn.Linear(d_model, 1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.positional_enc(x) x = self.encoders(x) x = self.layer_norm(x) logit = self.linear(x) sentences_scores = self.sigmoid(logit) return sentences_scores.squeeze(-1), logit.squeeze(-1)