|
import torch |
|
import torch.nn as nn |
|
import math |
|
|
|
|
|
|
|
|
|
class PositionalEncoding(nn.Module): |
|
def __init__(self, d_model, dropout=0.1, max_len=5000): |
|
super().__init__() |
|
self.dropout = nn.Dropout(p=dropout) |
|
|
|
position = torch.arange(max_len).unsqueeze(1) |
|
div_term = torch.exp(torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)) |
|
pe = torch.zeros(max_len, d_model) |
|
pe[:, 0::2] = torch.sin(position * div_term) |
|
pe[:, 1::2] = torch.cos(position * div_term) |
|
self.register_buffer("pe", pe) |
|
|
|
def forward(self, x): |
|
x = x + self.pe[:x.size(0)] |
|
return self.dropout(x) |
|
|
|
|
|
""" |
|
Same scheduler as in "Attention Is All You Need" |
|
""" |
|
class NoamScheduler(): |
|
def __init__(self, optimizer, warmup, model_size): |
|
self.epoch = 0 |
|
self.optimizer = optimizer |
|
self.warmup = warmup |
|
self.model_size = model_size |
|
|
|
def step(self): |
|
self.epoch += 1 |
|
new_lr = self.model_size**(-0.5) * min(self.epoch**(-0.5), self.epoch * self.warmup**(-1.5)) |
|
|
|
for param in self.optimizer.param_groups: |
|
param["lr"] = new_lr |
|
|
|
|
|
""" |
|
Encoders to attend sentence level features. |
|
""" |
|
class TransformerInterEncoder(nn.Module): |
|
def __init__(self, d_model, d_ff=2048, nheads=8, num_encoders=2, dropout=0.1, max_len=512): |
|
super().__init__() |
|
self.positional_enc = PositionalEncoding(d_model, dropout, max_len) |
|
self.encoders = nn.TransformerEncoder( |
|
nn.TransformerEncoderLayer(d_model=d_model, nhead=nheads, dim_feedforward=d_ff), |
|
num_layers=num_encoders |
|
) |
|
self.layer_norm = nn.LayerNorm(d_model) |
|
self.linear = nn.Linear(d_model, 1) |
|
self.sigmoid = nn.Sigmoid() |
|
|
|
def forward(self, x): |
|
x = self.positional_enc(x) |
|
x = self.encoders(x) |
|
x = self.layer_norm(x) |
|
logit = self.linear(x) |
|
sentences_scores = self.sigmoid(logit) |
|
|
|
return sentences_scores.squeeze(-1), logit.squeeze(-1) |