sippycoder
commited on
Commit
•
44fdd22
1
Parent(s):
2ca4391
initial commit
Browse files- configuration_nucleus.py +89 -0
- modeling_nucleus.py +155 -0
configuration_nucleus.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This config is based on LLaMA.
|
2 |
+
""" Nucleus model configuration"""
|
3 |
+
|
4 |
+
from transformers import LlamaConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
|
8 |
+
logger = logging.get_logger(__name__)
|
9 |
+
|
10 |
+
NUCLEUS_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
11 |
+
|
12 |
+
|
13 |
+
class NucleusConfig(LlamaConfig):
|
14 |
+
model_type = "nulceus"
|
15 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
vocab_size=32000,
|
20 |
+
hidden_size=4096,
|
21 |
+
intermediate_size=11008,
|
22 |
+
num_hidden_layers=32,
|
23 |
+
num_attention_heads=32,
|
24 |
+
num_key_value_heads=None,
|
25 |
+
hidden_act="silu",
|
26 |
+
max_position_embeddings=2048,
|
27 |
+
initializer_range=0.02,
|
28 |
+
rms_norm_eps=1e-6,
|
29 |
+
use_cache=True,
|
30 |
+
pad_token_id=None,
|
31 |
+
bos_token_id=1,
|
32 |
+
eos_token_id=2,
|
33 |
+
pretraining_tp=1,
|
34 |
+
tie_word_embeddings=False,
|
35 |
+
rope_theta=10000.0,
|
36 |
+
rope_scaling=None,
|
37 |
+
attention_bias=False,
|
38 |
+
**kwargs,
|
39 |
+
):
|
40 |
+
self.vocab_size = vocab_size
|
41 |
+
self.max_position_embeddings = max_position_embeddings
|
42 |
+
self.hidden_size = hidden_size
|
43 |
+
self.intermediate_size = intermediate_size
|
44 |
+
self.num_hidden_layers = num_hidden_layers
|
45 |
+
self.num_attention_heads = num_attention_heads
|
46 |
+
|
47 |
+
# for backward compatibility
|
48 |
+
if num_key_value_heads is None:
|
49 |
+
num_key_value_heads = num_attention_heads
|
50 |
+
|
51 |
+
self.num_key_value_heads = num_key_value_heads
|
52 |
+
self.hidden_act = hidden_act
|
53 |
+
self.initializer_range = initializer_range
|
54 |
+
self.rms_norm_eps = rms_norm_eps
|
55 |
+
self.pretraining_tp = pretraining_tp
|
56 |
+
self.use_cache = use_cache
|
57 |
+
self.rope_theta = rope_theta
|
58 |
+
self.rope_scaling = rope_scaling
|
59 |
+
self._rope_scaling_validation()
|
60 |
+
self.attention_bias = attention_bias
|
61 |
+
|
62 |
+
super().__init__(
|
63 |
+
pad_token_id=pad_token_id,
|
64 |
+
bos_token_id=bos_token_id,
|
65 |
+
eos_token_id=eos_token_id,
|
66 |
+
tie_word_embeddings=tie_word_embeddings,
|
67 |
+
**kwargs,
|
68 |
+
)
|
69 |
+
|
70 |
+
def _rope_scaling_validation(self):
|
71 |
+
"""
|
72 |
+
Validate the `rope_scaling` configuration.
|
73 |
+
"""
|
74 |
+
if self.rope_scaling is None:
|
75 |
+
return
|
76 |
+
|
77 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
78 |
+
raise ValueError(
|
79 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
|
80 |
+
f"got {self.rope_scaling}"
|
81 |
+
)
|
82 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
83 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
84 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
85 |
+
raise ValueError(
|
86 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
87 |
+
)
|
88 |
+
if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
89 |
+
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}")
|
modeling_nucleus.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This code is based on LLaMA
|
2 |
+
""" PyTorch Nucleus model."""
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from torch import nn
|
9 |
+
from torch.nn import CrossEntropyLoss
|
10 |
+
|
11 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
12 |
+
from .configuration_nucleus import NucleusConfig
|
13 |
+
|
14 |
+
from transformers import (
|
15 |
+
LlamaPreTrainedModel,
|
16 |
+
LlamaModel
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
class NucleusForCausalLM(LlamaPreTrainedModel):
|
21 |
+
_tied_weights_keys = ["lm_head.weight"]
|
22 |
+
|
23 |
+
def __init__(self, config: NucleusConfig):
|
24 |
+
super().__init__(config)
|
25 |
+
self.model = LlamaModel(config)
|
26 |
+
self.vocab_size = config.vocab_size
|
27 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
28 |
+
|
29 |
+
# Initialize weights and apply final processing
|
30 |
+
self.post_init()
|
31 |
+
|
32 |
+
def get_input_embeddings(self):
|
33 |
+
return self.model.embed_tokens
|
34 |
+
|
35 |
+
def set_input_embeddings(self, value):
|
36 |
+
self.model.embed_tokens = value
|
37 |
+
|
38 |
+
def get_output_embeddings(self):
|
39 |
+
return self.lm_head
|
40 |
+
|
41 |
+
def set_output_embeddings(self, new_embeddings):
|
42 |
+
self.lm_head = new_embeddings
|
43 |
+
|
44 |
+
def set_decoder(self, decoder):
|
45 |
+
self.model = decoder
|
46 |
+
|
47 |
+
def get_decoder(self):
|
48 |
+
return self.model
|
49 |
+
|
50 |
+
def forward(
|
51 |
+
self,
|
52 |
+
input_ids: torch.LongTensor = None,
|
53 |
+
attention_mask: Optional[torch.Tensor] = None,
|
54 |
+
position_ids: Optional[torch.LongTensor] = None,
|
55 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
56 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
57 |
+
labels: Optional[torch.LongTensor] = None,
|
58 |
+
use_cache: Optional[bool] = None,
|
59 |
+
output_attentions: Optional[bool] = None,
|
60 |
+
output_hidden_states: Optional[bool] = None,
|
61 |
+
return_dict: Optional[bool] = None,
|
62 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
63 |
+
|
64 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
65 |
+
output_hidden_states = (
|
66 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
67 |
+
)
|
68 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
69 |
+
|
70 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
71 |
+
outputs = self.model(
|
72 |
+
input_ids=input_ids,
|
73 |
+
attention_mask=attention_mask,
|
74 |
+
position_ids=position_ids,
|
75 |
+
past_key_values=past_key_values,
|
76 |
+
inputs_embeds=inputs_embeds,
|
77 |
+
use_cache=use_cache,
|
78 |
+
output_attentions=output_attentions,
|
79 |
+
output_hidden_states=output_hidden_states,
|
80 |
+
return_dict=return_dict,
|
81 |
+
)
|
82 |
+
|
83 |
+
hidden_states = outputs[0]
|
84 |
+
if self.config.pretraining_tp > 1:
|
85 |
+
lm_head_slices = self.lm_head.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
86 |
+
logits = [F.linear(hidden_states, lm_head_slices[i]) for i in range(self.config.pretraining_tp)]
|
87 |
+
logits = torch.cat(logits, dim=-1)
|
88 |
+
else:
|
89 |
+
logits = self.lm_head(hidden_states)
|
90 |
+
logits = logits.float()
|
91 |
+
|
92 |
+
loss = None
|
93 |
+
if labels is not None:
|
94 |
+
# Shift so that tokens < n predict n
|
95 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
96 |
+
shift_labels = labels[..., 1:].contiguous()
|
97 |
+
# Flatten the tokens
|
98 |
+
loss_fct = CrossEntropyLoss()
|
99 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
100 |
+
shift_labels = shift_labels.view(-1)
|
101 |
+
# Enable model parallelism
|
102 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
103 |
+
loss = loss_fct(shift_logits, shift_labels)
|
104 |
+
|
105 |
+
if not return_dict:
|
106 |
+
output = (logits,) + outputs[1:]
|
107 |
+
return (loss,) + output if loss is not None else output
|
108 |
+
|
109 |
+
return CausalLMOutputWithPast(
|
110 |
+
loss=loss,
|
111 |
+
logits=logits,
|
112 |
+
past_key_values=outputs.past_key_values,
|
113 |
+
hidden_states=outputs.hidden_states,
|
114 |
+
attentions=outputs.attentions,
|
115 |
+
)
|
116 |
+
|
117 |
+
def prepare_inputs_for_generation(
|
118 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
119 |
+
):
|
120 |
+
if past_key_values:
|
121 |
+
input_ids = input_ids[:, -1:]
|
122 |
+
|
123 |
+
position_ids = kwargs.get("position_ids", None)
|
124 |
+
if attention_mask is not None and position_ids is None:
|
125 |
+
# create position_ids on the fly for batch generation
|
126 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
127 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
128 |
+
if past_key_values:
|
129 |
+
position_ids = position_ids[:, -1].unsqueeze(-1)
|
130 |
+
|
131 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
132 |
+
if inputs_embeds is not None and past_key_values is None:
|
133 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
134 |
+
else:
|
135 |
+
model_inputs = {"input_ids": input_ids}
|
136 |
+
|
137 |
+
model_inputs.update(
|
138 |
+
{
|
139 |
+
"position_ids": position_ids,
|
140 |
+
"past_key_values": past_key_values,
|
141 |
+
"use_cache": kwargs.get("use_cache"),
|
142 |
+
"attention_mask": attention_mask,
|
143 |
+
}
|
144 |
+
)
|
145 |
+
return model_inputs
|
146 |
+
|
147 |
+
@staticmethod
|
148 |
+
def _reorder_cache(past_key_values, beam_idx):
|
149 |
+
reordered_past = ()
|
150 |
+
for layer_past in past_key_values:
|
151 |
+
reordered_past += (
|
152 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
153 |
+
)
|
154 |
+
return reordered_past
|
155 |
+
|