bge-base-mbpp / README.md
nuralnetwork's picture
Add new SentenceTransformer model.
e623cee verified
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:317521
- loss:TripletLoss
widget:
- source_sentence: Write a function to extract every specified element from a given
two dimensional list.
sentences:
- "def nCr_mod_p(n, r, p): \r\n\tif (r > n- r): \r\n\t\tr = n - r \r\n\tC = [0 for\
\ i in range(r + 1)] \r\n\tC[0] = 1 \r\n\tfor i in range(1, n + 1): \r\n\t\tfor\
\ j in range(min(i, r), 0, -1): \r\n\t\t\tC[j] = (C[j] + C[j-1]) % p \r\n\treturn\
\ C[r] "
- "import cmath\r\ndef len_complex(a,b):\r\n cn=complex(a,b)\r\n length=abs(cn)\r\
\n return length"
- "def specified_element(nums, N):\r\n result = [i[N] for i in nums]\r\n return\
\ result"
- source_sentence: Write a python function to find the kth element in an array containing
odd elements first and then even elements.
sentences:
- "def get_Number(n, k): \r\n arr = [0] * n; \r\n i = 0; \r\n odd = 1;\
\ \r\n while (odd <= n): \r\n arr[i] = odd; \r\n i += 1; \r\
\n odd += 2;\r\n even = 2; \r\n while (even <= n): \r\n arr[i]\
\ = even; \r\n i += 1;\r\n even += 2; \r\n return arr[k - 1]; "
- "def sort_matrix(M):\r\n result = sorted(M, key=sum)\r\n return result"
- "INT_BITS = 32\r\ndef left_Rotate(n,d): \r\n return (n << d)|(n >> (INT_BITS\
\ - d)) "
- source_sentence: Write a function to remove all the words with k length in the given
string.
sentences:
- "def remove_tuples(test_list, K):\r\n res = [ele for ele in test_list if len(ele)\
\ != K]\r\n return (res) "
- "def is_Sub_Array(A,B,n,m): \r\n i = 0; j = 0; \r\n while (i < n and j <\
\ m): \r\n if (A[i] == B[j]): \r\n i += 1; \r\n \
\ j += 1; \r\n if (j == m): \r\n return True; \r\n\
\ else: \r\n i = i - j + 1; \r\n j = 0; \r\n\
\ return False; "
- "def remove_length(test_str, K):\r\n temp = test_str.split()\r\n res = [ele\
\ for ele in temp if len(ele) != K]\r\n res = ' '.join(res)\r\n return (res) "
- source_sentence: Write a function to find the occurence of characters 'std' in the
given string 1. list item 1. list item 1. list item 2. list item 2. list item
2. list item
sentences:
- "def magic_square_test(my_matrix):\r\n iSize = len(my_matrix[0])\r\n sum_list\
\ = []\r\n sum_list.extend([sum (lines) for lines in my_matrix]) \r\n \
\ for col in range(iSize):\r\n sum_list.append(sum(row[col] for row in\
\ my_matrix))\r\n result1 = 0\r\n for i in range(0,iSize):\r\n result1\
\ +=my_matrix[i][i]\r\n sum_list.append(result1) \r\n result2 = 0\r\
\n for i in range(iSize-1,-1,-1):\r\n result2 +=my_matrix[i][i]\r\n\
\ sum_list.append(result2)\r\n if len(set(sum_list))>1:\r\n return\
\ False\r\n return True"
- "def count_occurance(s):\r\n count=0\r\n for i in range(len(s)):\r\n if (s[i]==\
\ 's' and s[i+1]=='t' and s[i+2]== 'd'):\r\n count = count + 1\r\n return\
\ count"
- "def power(a,b):\r\n\tif b==0:\r\n\t\treturn 1\r\n\telif a==0:\r\n\t\treturn 0\r\
\n\telif b==1:\r\n\t\treturn a\r\n\telse:\r\n\t\treturn a*power(a,b-1)"
- source_sentence: Write a function to find sum and average of first n natural numbers.
sentences:
- "def long_words(n, str):\r\n word_len = []\r\n txt = str.split(\" \")\r\n\
\ for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\
\n return word_len\t"
- "def long_words(n, str):\r\n word_len = []\r\n txt = str.split(\" \")\r\n\
\ for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\
\n return word_len\t"
- "def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\
\n total = total + value\r\n average = total / number\r\n return (total,average)"
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
results:
- task:
type: triplet
name: Triplet
dataset:
name: sts dev
type: sts-dev
metrics:
- type: cosine_accuracy
value: 0.997141408425864
name: Cosine Accuracy
- type: dot_accuracy
value: 0.0028145001873883936
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.99605382088609
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.997141408425864
name: Euclidean Accuracy
- type: max_accuracy
value: 0.997141408425864
name: Max Accuracy
---
# SentenceTransformer based on BAAI/bge-base-en-v1.5
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Nutanix/bge-base-mbpp")
# Run inference
sentences = [
'Write a function to find sum and average of first n natural numbers.',
'def sum_average(number):\r\n total = 0\r\n for value in range(1, number + 1):\r\n total = total + value\r\n average = total / number\r\n return (total,average)',
'def long_words(n, str):\r\n word_len = []\r\n txt = str.split(" ")\r\n for x in txt:\r\n if len(x) > n:\r\n word_len.append(x)\r\n return word_len\t',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Triplet
* Dataset: `sts-dev`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.9971 |
| dot_accuracy | 0.0028 |
| manhattan_accuracy | 0.9961 |
| euclidean_accuracy | 0.9971 |
| **max_accuracy** | **0.9971** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Hyperparameters
#### Non-Default Hyperparameters
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `bf16`: True
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
<details><summary>Click to expand</summary>
| Epoch | Step | Training Loss | sts-dev_max_accuracy |
|:------:|:-----:|:-------------:|:--------------------:|
| 0.0050 | 100 | 4.3364 | - |
| 0.0101 | 200 | 4.122 | - |
| 0.0151 | 300 | 4.0825 | - |
| 0.0202 | 400 | 4.0381 | - |
| 0.0252 | 500 | 4.015 | - |
| 0.0302 | 600 | 3.9996 | - |
| 0.0353 | 700 | 3.9567 | - |
| 0.0403 | 800 | 3.9593 | - |
| 0.0453 | 900 | 3.9456 | - |
| 0.0504 | 1000 | 3.938 | - |
| 0.0554 | 1100 | 3.933 | - |
| 0.0605 | 1200 | 3.905 | - |
| 0.0655 | 1300 | 3.906 | - |
| 0.0705 | 1400 | 3.9073 | - |
| 0.0756 | 1500 | 3.9193 | - |
| 0.0806 | 1600 | 3.9016 | - |
| 0.0857 | 1700 | 3.8899 | - |
| 0.0907 | 1800 | 3.9 | - |
| 0.0957 | 1900 | 3.8983 | - |
| 0.1008 | 2000 | 3.876 | - |
| 0.1058 | 2100 | 3.9001 | - |
| 0.1109 | 2200 | 3.8818 | - |
| 0.1159 | 2300 | 3.8788 | - |
| 0.1209 | 2400 | 3.8815 | - |
| 0.1260 | 2500 | 3.8664 | - |
| 0.1310 | 2600 | 3.854 | - |
| 0.1360 | 2700 | 3.8674 | - |
| 0.1411 | 2800 | 3.8525 | - |
| 0.1461 | 2900 | 3.8733 | - |
| 0.1512 | 3000 | 3.8538 | - |
| 0.1562 | 3100 | 3.8348 | - |
| 0.1612 | 3200 | 3.8378 | - |
| 0.1663 | 3300 | 3.8504 | - |
| 0.1713 | 3400 | 3.8409 | - |
| 0.1764 | 3500 | 3.8436 | - |
| 0.1814 | 3600 | 3.8422 | - |
| 0.1864 | 3700 | 3.8629 | - |
| 0.1915 | 3800 | 3.8589 | - |
| 0.1965 | 3900 | 3.8572 | - |
| 0.2016 | 4000 | 3.8309 | - |
| 0.2066 | 4100 | 3.8465 | - |
| 0.2116 | 4200 | 3.8311 | - |
| 0.2167 | 4300 | 3.8124 | - |
| 0.2217 | 4400 | 3.8412 | - |
| 0.2267 | 4500 | 3.8228 | - |
| 0.2318 | 4600 | 3.8012 | - |
| 0.2368 | 4700 | 3.8185 | - |
| 0.2419 | 4800 | 3.8242 | - |
| 0.2469 | 4900 | 3.7917 | - |
| 0.2519 | 5000 | 3.8022 | - |
| 0.2570 | 5100 | 3.7991 | - |
| 0.2620 | 5200 | 3.7943 | - |
| 0.2671 | 5300 | 3.7874 | - |
| 0.2721 | 5400 | 3.7987 | - |
| 0.2771 | 5500 | 3.7982 | - |
| 0.2822 | 5600 | 3.7789 | - |
| 0.2872 | 5700 | 3.7837 | - |
| 0.2923 | 5800 | 3.7762 | - |
| 0.2973 | 5900 | 3.7854 | - |
| 0.3023 | 6000 | 3.7719 | - |
| 0.3074 | 6100 | 3.7925 | - |
| 0.3124 | 6200 | 3.7795 | - |
| 0.3174 | 6300 | 3.7725 | - |
| 0.3225 | 6400 | 3.7897 | - |
| 0.3275 | 6500 | 3.773 | - |
| 0.3326 | 6600 | 3.7803 | - |
| 0.3376 | 6700 | 3.7476 | - |
| 0.3426 | 6800 | 3.7585 | - |
| 0.3477 | 6900 | 3.7426 | - |
| 0.3527 | 7000 | 3.7529 | - |
| 0.3578 | 7100 | 3.7745 | - |
| 0.3628 | 7200 | 3.7771 | - |
| 0.3678 | 7300 | 3.7598 | - |
| 0.3729 | 7400 | 3.7428 | - |
| 0.3779 | 7500 | 3.7409 | - |
| 0.3829 | 7600 | 3.7569 | - |
| 0.3880 | 7700 | 3.7517 | - |
| 0.3930 | 7800 | 3.7484 | - |
| 0.3981 | 7900 | 3.7415 | - |
| 0.4031 | 8000 | 3.7228 | - |
| 0.4081 | 8100 | 3.7569 | - |
| 0.4132 | 8200 | 3.7421 | - |
| 0.4182 | 8300 | 3.7233 | - |
| 0.4233 | 8400 | 3.72 | - |
| 0.4283 | 8500 | 3.7431 | - |
| 0.4333 | 8600 | 3.7258 | - |
| 0.4384 | 8700 | 3.73 | - |
| 0.4434 | 8800 | 3.7286 | - |
| 0.4485 | 8900 | 3.7487 | - |
| 0.4535 | 9000 | 3.7359 | - |
| 0.4585 | 9100 | 3.7387 | - |
| 0.4636 | 9200 | 3.7135 | - |
| 0.4686 | 9300 | 3.7219 | - |
| 0.4736 | 9400 | 3.7189 | - |
| 0.4787 | 9500 | 3.7234 | - |
| 0.4837 | 9600 | 3.7333 | - |
| 0.4888 | 9700 | 3.7027 | - |
| 0.4938 | 9800 | 3.7358 | - |
| 0.4988 | 9900 | 3.6959 | - |
| 0.5039 | 10000 | 3.7051 | - |
| 0.5089 | 10100 | 3.7205 | - |
| 0.5140 | 10200 | 3.711 | - |
| 0.5190 | 10300 | 3.6898 | - |
| 0.5240 | 10400 | 3.7103 | - |
| 0.5291 | 10500 | 3.695 | - |
| 0.5341 | 10600 | 3.7108 | - |
| 0.5392 | 10700 | 3.7226 | - |
| 0.5442 | 10800 | 3.7004 | - |
| 0.5492 | 10900 | 3.736 | - |
| 0.5543 | 11000 | 3.7135 | - |
| 0.5593 | 11100 | 3.7148 | - |
| 0.5643 | 11200 | 3.7285 | - |
| 0.5694 | 11300 | 3.694 | - |
| 0.5744 | 11400 | 3.6913 | - |
| 0.5795 | 11500 | 3.69 | - |
| 0.5845 | 11600 | 3.7249 | - |
| 0.5895 | 11700 | 3.6907 | - |
| 0.5946 | 11800 | 3.7135 | - |
| 0.5996 | 11900 | 3.7172 | - |
| 0.6047 | 12000 | 3.7087 | - |
| 0.6097 | 12100 | 3.7045 | - |
| 0.6147 | 12200 | 3.7043 | - |
| 0.6198 | 12300 | 3.693 | - |
| 0.6248 | 12400 | 3.6982 | - |
| 0.6298 | 12500 | 3.6922 | - |
| 0.6349 | 12600 | 3.6857 | - |
| 0.6399 | 12700 | 3.6834 | - |
| 0.6450 | 12800 | 3.7052 | - |
| 0.6500 | 12900 | 3.6935 | - |
| 0.6550 | 13000 | 3.6736 | - |
| 0.6601 | 13100 | 3.7026 | - |
| 0.6651 | 13200 | 3.6846 | - |
| 0.6702 | 13300 | 3.704 | - |
| 0.6752 | 13400 | 3.6818 | - |
| 0.6802 | 13500 | 3.7075 | - |
| 0.6853 | 13600 | 3.6688 | - |
| 0.6903 | 13700 | 3.6933 | - |
| 0.6954 | 13800 | 3.6971 | - |
| 0.7004 | 13900 | 3.6785 | - |
| 0.7054 | 14000 | 3.7088 | - |
| 0.7105 | 14100 | 3.7127 | - |
| 0.7155 | 14200 | 3.6996 | - |
| 0.7205 | 14300 | 3.6901 | - |
| 0.7256 | 14400 | 3.6914 | - |
| 0.7306 | 14500 | 3.6659 | - |
| 0.7357 | 14600 | 3.6859 | - |
| 0.7407 | 14700 | 3.68 | - |
| 0.7457 | 14800 | 3.6874 | - |
| 0.7508 | 14900 | 3.6854 | - |
| 0.7558 | 15000 | 3.671 | - |
| 0.7609 | 15100 | 3.6909 | - |
| 0.7659 | 15200 | 3.7014 | - |
| 0.7709 | 15300 | 3.6828 | - |
| 0.7760 | 15400 | 3.6773 | - |
| 0.7810 | 15500 | 3.6863 | - |
| 0.7861 | 15600 | 3.6892 | - |
| 0.7911 | 15700 | 3.6864 | - |
| 0.7961 | 15800 | 3.6586 | - |
| 0.8012 | 15900 | 3.6639 | - |
| 0.8062 | 16000 | 3.6843 | - |
| 0.8112 | 16100 | 3.6865 | - |
| 0.8163 | 16200 | 3.678 | - |
| 0.8213 | 16300 | 3.6825 | - |
| 0.8264 | 16400 | 3.7068 | - |
| 0.8314 | 16500 | 3.6886 | - |
| 0.8364 | 16600 | 3.6905 | - |
| 0.8415 | 16700 | 3.6905 | - |
| 0.8465 | 16800 | 3.6677 | - |
| 0.8516 | 16900 | 3.684 | - |
| 0.8566 | 17000 | 3.6872 | - |
| 0.8616 | 17100 | 3.6849 | - |
| 0.8667 | 17200 | 3.662 | - |
| 0.8717 | 17300 | 3.6887 | - |
| 0.8768 | 17400 | 3.6999 | - |
| 0.8818 | 17500 | 3.6916 | - |
| 0.8868 | 17600 | 3.6853 | - |
| 0.8919 | 17700 | 3.6971 | - |
| 0.8969 | 17800 | 3.6846 | - |
| 0.9019 | 17900 | 3.6701 | - |
| 0.9070 | 18000 | 3.6911 | - |
| 0.9120 | 18100 | 3.7021 | - |
| 0.9171 | 18200 | 3.6851 | - |
| 0.9221 | 18300 | 3.6924 | - |
| 0.9271 | 18400 | 3.6644 | - |
| 0.9322 | 18500 | 3.6674 | - |
| 0.9372 | 18600 | 3.6962 | - |
| 0.9423 | 18700 | 3.6759 | - |
| 0.9473 | 18800 | 3.6839 | - |
| 0.9523 | 18900 | 3.6822 | - |
| 0.9574 | 19000 | 3.6947 | - |
| 0.9624 | 19100 | 3.6589 | - |
| 0.9674 | 19200 | 3.6817 | - |
| 0.9725 | 19300 | 3.6754 | - |
| 0.9775 | 19400 | 3.6947 | - |
| 0.9826 | 19500 | 3.6785 | - |
| 0.9876 | 19600 | 3.6776 | - |
| 0.9926 | 19700 | 3.6791 | - |
| 0.9977 | 19800 | 3.6795 | - |
| 1.0 | 19846 | - | 0.9971 |
</details>
### Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.1
- Transformers: 4.40.0
- PyTorch: 2.3.0+cu121
- Accelerate: 0.33.0
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### TripletLoss
```bibtex
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->