JustinLin610 commited on
Commit
335e715
1 Parent(s): 43ab48f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -5
README.md CHANGED
@@ -20,7 +20,8 @@ After, refer the path to OFA-tiny to `ckpt_dir`, and prepare an image for the te
20
  ```
21
  >>> from PIL import Image
22
  >>> from torchvision import transforms
23
- >>> from transformers import OFATokenizer, OFAForConditionalGeneration
 
24
 
25
  >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
26
  >>> resolution = 256
@@ -31,14 +32,27 @@ After, refer the path to OFA-tiny to `ckpt_dir`, and prepare an image for the te
31
  transforms.Normalize(mean=mean, std=std)
32
  ])
33
 
34
- >>> model = OFAForConditionalGeneration.from_pretrained(ckpt_dir)
35
  >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir)
36
 
37
- >>> txt = " what is the description of the image?"
38
- >>> inputs = tokenizer([txt], max_length=1024, return_tensors="pt")["input_ids"]
39
  >>> img = Image.open(path_to_image)
40
  >>> patch_img = patch_resize_transform(img).unsqueeze(0)
41
 
42
- >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=4)
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True))
44
  ```
 
20
  ```
21
  >>> from PIL import Image
22
  >>> from torchvision import transforms
23
+ >>> from transformers import OFATokenizer, OFAModel
24
+ >>> from generate import sequence_generator
25
 
26
  >>> mean, std = [0.5, 0.5, 0.5], [0.5, 0.5, 0.5]
27
  >>> resolution = 256
 
32
  transforms.Normalize(mean=mean, std=std)
33
  ])
34
 
35
+
36
  >>> tokenizer = OFATokenizer.from_pretrained(ckpt_dir)
37
 
38
+ >>> txt = " what does the image describe?"
39
+ >>> inputs = tokenizer([txt], return_tensors="pt").input_ids
40
  >>> img = Image.open(path_to_image)
41
  >>> patch_img = patch_resize_transform(img).unsqueeze(0)
42
 
43
+
44
+ >>> # using the generator of fairseq version
45
+ >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=True)
46
+ >>> generator = sequence_generator.SequenceGenerator(tokenizer=tokenizer,beam_size=5, max_len_b=16,
47
+ min_len=0, no_repeat_ngram_size=3) # using the generator of fairseq version
48
+ >>> data = {}
49
+ >>> data["net_input"] = {"input_ids": inputs, 'patch_images': patch_img, 'patch_masks':torch.tensor([True])}
50
+ >>> gen_output = generator.generate([model], data)
51
+ >>> gen = [gen_output[i][0]["tokens"] for i in range(len(gen_output))]
52
+
53
+ >>> # using the generator of huggingface version
54
+ >>> model = OFAModel.from_pretrained(ckpt_dir, use_cache=False)
55
+ >>> gen = model.generate(inputs, patch_images=patch_img, num_beams=5, no_repeat_ngram_size=3)
56
+
57
  >>> print(tokenizer.batch_decode(gen, skip_special_tokens=True))
58
  ```