File size: 2,406 Bytes
bcb774f
 
ab1c924
 
 
 
 
3380242
ab1c924
 
 
 
 
 
 
 
 
 
 
bcb774f
 
ab1c924
bcb774f
 
 
ab1c924
 
 
 
 
 
bcb774f
 
 
ab1c924
 
 
bcb774f
ab1c924
bcb774f
 
 
 
 
 
 
 
 
08c7d92
3e35f11
bcb774f
ab1c924
 
 
 
 
 
 
 
bcb774f
 
 
 
ab1c924
 
 
 
 
bcb774f
 
 
ab1c924
bcb774f
ab1c924
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
license: mit
datasets:
- muse-bench/MUSE-News
language:
- en
base_model:
- muse-bench/MUSE-news_target
pipeline_tag: text-generation
library_name: transformers
tags:
- unlearn
- machine-unlearning
- llm-unlearning
- data-privacy
- large-language-models
- trustworthy-ai
- trustworthy-machine-learning
- language-model
---

# SimNPO-Unlearned Model on Task "MUSE - News"

## Model Details

- **Unlearning**:
  - **Task**: [🤗datasets/muse-bench/MUSE-News](https://huggingface.co/datasets/muse-bench/MUSE-News)
  - **Method**: [SimNPO](https://arxiv.org/abs/2410.07163)
- **Origin Model**: [🤗muse-bench/MUSE-news_target](https://huggingface.co/muse-bench/MUSE-news_target)
- **Code Base**: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)
- **Research Paper**: ["Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"](https://arxiv.org/abs/2410.07163)

## Unlearning Algorithm

This model uses the `SimNPO` unlearning algorithm with the following optimization objective:
$$\ell_{SimNPO}(\mathbf{\theta}) = \mathbb{E}_{(x, y) \in \mathcal{D}_f}\left[-\frac{2}{\beta}\log\sigma\left(-\frac{\beta}{|y|}\log\pi_{\mathbf{\theta}}(y|x) - \gamma\right)\right] + \lambda \mathbb{E}_{(x, y) \in \mathcal{D}_r}[-\log\pi_{\mathbf{\theta}} (y|x)]$$
Unlearning hyper-parameters:
- Learning Rate: `1e-5`
- beta: `0.7`
- lambda: `1.0`
- gamma: `3.0`

## Loading the Model

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-MUSE-News-llama-2-7b", torch_dtype=torch.bfloat16, device_map='auto')
```

## Evaluation Results
||VerbMem Df|KnowMem Df|PrivLeak|KnowMem Dr|
|---|---|---|---|---|
|Origin|58.29|62.93|-98.71|54.31|
|Retrain|20.75|33.32|0.00|53.79|
|NPO|0.00|56.93|56.93|108.91|
|**SimNPO**|12.90|47.09|11.90|40.31|

## Citation

If you use this model in your research, please cite: 
```
@article{fan2024simplicity,
  title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
  author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
  journal={arXiv preprint arXiv:2410.07163},
  year={2024}
}
```

## Reporting Issues

Reporting issues with the model: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)