File size: 2,406 Bytes
bcb774f ab1c924 3380242 ab1c924 bcb774f ab1c924 bcb774f ab1c924 bcb774f ab1c924 bcb774f ab1c924 bcb774f 08c7d92 3e35f11 bcb774f ab1c924 bcb774f ab1c924 bcb774f ab1c924 bcb774f ab1c924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
license: mit
datasets:
- muse-bench/MUSE-News
language:
- en
base_model:
- muse-bench/MUSE-news_target
pipeline_tag: text-generation
library_name: transformers
tags:
- unlearn
- machine-unlearning
- llm-unlearning
- data-privacy
- large-language-models
- trustworthy-ai
- trustworthy-machine-learning
- language-model
---
# SimNPO-Unlearned Model on Task "MUSE - News"
## Model Details
- **Unlearning**:
- **Task**: [🤗datasets/muse-bench/MUSE-News](https://huggingface.co/datasets/muse-bench/MUSE-News)
- **Method**: [SimNPO](https://arxiv.org/abs/2410.07163)
- **Origin Model**: [🤗muse-bench/MUSE-news_target](https://huggingface.co/muse-bench/MUSE-news_target)
- **Code Base**: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple)
- **Research Paper**: ["Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning"](https://arxiv.org/abs/2410.07163)
## Unlearning Algorithm
This model uses the `SimNPO` unlearning algorithm with the following optimization objective:
$$\ell_{SimNPO}(\mathbf{\theta}) = \mathbb{E}_{(x, y) \in \mathcal{D}_f}\left[-\frac{2}{\beta}\log\sigma\left(-\frac{\beta}{|y|}\log\pi_{\mathbf{\theta}}(y|x) - \gamma\right)\right] + \lambda \mathbb{E}_{(x, y) \in \mathcal{D}_r}[-\log\pi_{\mathbf{\theta}} (y|x)]$$
Unlearning hyper-parameters:
- Learning Rate: `1e-5`
- beta: `0.7`
- lambda: `1.0`
- gamma: `3.0`
## Loading the Model
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("OPTML-Group/SimNPO-MUSE-News-llama-2-7b", torch_dtype=torch.bfloat16, device_map='auto')
```
## Evaluation Results
||VerbMem Df|KnowMem Df|PrivLeak|KnowMem Dr|
|---|---|---|---|---|
|Origin|58.29|62.93|-98.71|54.31|
|Retrain|20.75|33.32|0.00|53.79|
|NPO|0.00|56.93|56.93|108.91|
|**SimNPO**|12.90|47.09|11.90|40.31|
## Citation
If you use this model in your research, please cite:
```
@article{fan2024simplicity,
title={Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning},
author={Fan, Chongyu and Liu, Jiancheng and Lin, Licong and Jia, Jinghan and Zhang, Ruiqi and Mei, Song and Liu, Sijia},
journal={arXiv preprint arXiv:2410.07163},
year={2024}
}
```
## Reporting Issues
Reporting issues with the model: [github.com/OPTML-Group/Unlearn-Simple](https://github.com/OPTML-Group/Unlearn-Simple) |