--- library_name: transformers.js pipeline_tag: object-detection --- ONNX weights for https://huggingface.co/hantian/yolo-doclaynet yolo10b ## Usage (Transformers.js) If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Perform object-detection with `Oblix/yolov10b-doclaynet_ONNX_document-layout-analysis`. ```js const model = await AutoModel.from_pretrained( "Oblix/yolov10b-doclaynet_ONNX_document-layout-analysis", { dtype: "fp32" } ); const processor = await AutoProcessor.from_pretrained( "Oblix/yolov10b-doclaynet_ONNX_document-layout-analysis" ); const url = "https://huggingface.co/DILHTWD/documentlayoutsegmentation_YOLOv8_ondoclaynet/resolve/main/sample1.png"; const image = await RawImage.read(url); const { pixel_values, reshaped_input_sizes } = await processor(image); // Run object detection const { output0 } = await model({ images: pixel_values }); const predictions = output0.tolist()[0]; const threshold = 0.35; const [newHeight, newWidth] = reshaped_input_sizes[0]; // Reshaped height and width const [xs, ys] = [image.width / newWidth, image.height / newHeight]; // x and y resize scales for (const [xmin, ymin, xmax, ymax, score, id] of predictions) { if (score < threshold) continue; // Convert to original image coordinates const bbox = [xmin * xs, ymin * ys, xmax * xs, ymax * ys] .map((x) => x.toFixed(2)) .join(", "); console.log( // eslint-disable-next-line @typescript-eslint/no-explicit-any `Found "${(model.config as any).id2label[id]}" at [${bbox}] with score ${score.toFixed( 2 )}.` ); } ``` **Result** ``` Found "Text" at [53.75, 478.56, 623.46, 562.13] with score 0.98. Found "Text" at [54.20, 593.64, 609.42, 637.15] with score 0.98. Found "Text" at [53.98, 715.41, 621.06, 759.33] with score 0.98. Found "Text" at [53.98, 247.44, 610.82, 277.49] with score 0.97. Found "Title" at [53.64, 75.40, 551.96, 159.72] with score 0.97. Found "List-item" at [55.56, 761.62, 607.48, 792.06] with score 0.97. Found "List-item" at [56.05, 657.97, 614.57, 701.79] with score 0.97. Found "Text" at [54.10, 195.40, 221.43, 211.88] with score 0.96. Found "Text" at [54.25, 169.14, 95.17, 186.22] with score 0.95. Found "Text" at [54.15, 222.11, 98.62, 237.74] with score 0.95. Found "Text" at [53.73, 429.63, 412.82, 446.28] with score 0.95. Found "Page-header" at [308.98, 10.07, 605.53, 34.59] with score 0.95. Found "Section-header" at [54.18, 338.87, 102.68, 355.16] with score 0.95. Found "List-item" at [55.75, 793.91, 519.29, 810.43] with score 0.95. Found "Section-header" at [54.20, 453.01, 145.02, 469.42] with score 0.94. Found "Text" at [56.76, 309.85, 316.43, 325.71] with score 0.93. Found "List-item" at [55.62, 812.37, 445.03, 829.42] with score 0.92. Found "Page-footer" at [308.43, 907.93, 374.03, 922.28] with score 0.92. Found "Section-header" at [53.70, 567.21, 75.24, 584.85] with score 0.91. Found "Text" at [56.26, 289.47, 415.46, 306.48] with score 0.80. Found "Text" at [54.11, 365.35, 623.46, 407.97] with score 0.79. Found "List-item" at [55.77, 638.84, 382.47, 655.46] with score 0.60. ``` ![image/png](https://huggingface.co/Oblix/yolov10b-doclaynet_ONNX_document-layout-analysis/resolve/main/result.png) ## Labels - Caption [0] - Footnote [1] - Formula [2] - List-item [3] - Page-footer [4] - Page-header [5] - Picture [6] - Section-header [7] - Table [8] - Text [9] - Title [10]