File size: 1,940 Bytes
98f3648
 
 
 
 
 
f5c8a98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
datasets:
- alaleye/aloresb
metrics:
- wer
pipeline_tag: automatic-speech-recognition
---

# Wav2vec2-Bert-Fongbe

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://arxiv.org/abs/2108.06209). This has a WER of 24.20 on [Aloresb dataset](https://huggingface.co/datasets/alaleye/aloresb), fongbe language.

## Model description
This model is a fine-tuned version of the wav2vec2-BERT architecture on the AlorésB dataset for the Fongbe language. Fongbe, a Gbe language, is predominantly spoken in the southern region of Benin. The model has been fine-tuned specifically for Automatic Speech Recognition (ASR) tasks in this language.
It can be useful for transcription services, research, and linguistic studies involving Fongbe.

### Details

* Model Name: wav2vec2-bert-fongbe
* Base Model: facebook/w2v-bert-2.0
* Fine-tuned on: Aloresb dataset
* Languages: Fongbe
* Architecture: Wav2vec2 + BERT
* Fine-tuning Dataset: Aloresb (Fongbe)

### How to use

```
import torch
import soundfile as sf
from transformers import AutoModelForCTC, Wav2Vec2BertProcessor

model_name = "OctaSpace/wav2vec2-bert-fongbe"

asr_model = AutoModelForCTC.from_pretrained(model_name).to(device)
processor = Wav2Vec2BertProcessor.from_pretrained(model_name)

audio_input, _ = sf.read(file)

inputs = processor([audio_input], sampling_rate=16_000).input_features
features = torch.tensor(inputs)

with torch.no_grad():
  logits = asr_model(features).logits

predicted_ids = torch.argmax(logits, dim=-1)
predictions = processor.batch_decode(predicted_ids, skip_special_tokens=True)

```

### Training Procedure

The model was fine-tuned on the Aloresb dataset, which contains audio recordings and transcriptions in Fongbe.

### Training Parameters:

Optimizer: AdamW
Learning Rate: 3e-5
Batch Size: 3
Epochs: 3
Evaluation Results
The model was evaluated using the Word Error Rate (WER) metric on a test set. Here are the results:

WER: 24.20%