Omartificial-Intelligence-Space
commited on
Commit
•
20542e5
1
Parent(s):
c75b992
Update readme.md
Browse files
README.md
CHANGED
@@ -1,11 +1,102 @@
|
|
1 |
---
|
|
|
2 |
language:
|
3 |
- ar
|
4 |
-
|
5 |
-
base_model: unsloth/llama-3-8b-bnb-4bit
|
6 |
tags:
|
7 |
-
-
|
8 |
-
-
|
9 |
-
-
|
10 |
-
|
11 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
language:
|
4 |
- ar
|
5 |
+
- en
|
|
|
6 |
tags:
|
7 |
+
- alpaca
|
8 |
+
- llama3
|
9 |
+
- arabic
|
10 |
+
library_name: peft
|
11 |
+
---
|
12 |
+
|
13 |
+
# 🚀 al-baka-llama3-8b
|
14 |
+
|
15 |
+
[<img src="https://i.ibb.co/fMsBM0M/Screenshot-2024-04-20-at-3-04-34-AM.png" width="150"/>](https://www.omarai.co)
|
16 |
+
|
17 |
+
|
18 |
+
Al Baka is an Fine Tuned Model based on the new released LLAMA3-8B Model on the Stanford Alpaca dataset Arabic version [Yasbok/Alpaca_arabic_instruct](https://huggingface.co/datasets/Yasbok/Alpaca_arabic_instruct).
|
19 |
+
|
20 |
+
## Model Summary
|
21 |
+
|
22 |
+
- **Model Type:** Llama3-8B FineTuned Model (Lora Only)
|
23 |
+
- **Language(s):** Arabic, English
|
24 |
+
- **Base Model:** [LLAMA-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B)
|
25 |
+
- **Dataset:** [Yasbok/Alpaca_arabic_instruct](https://huggingface.co/datasets/Yasbok/Alpaca_arabic_instruct)
|
26 |
+
|
27 |
+
## Model Details
|
28 |
+
|
29 |
+
- The model was fine-tuned in 4-bit precision using [unsloth](https://github.com/unslothai/unsloth)
|
30 |
+
|
31 |
+
- The run is performed only for 1000 steps with a single Google Colab T4 GPU NVIDIA GPU with 15 GB of available memory.
|
32 |
+
|
33 |
+
|
34 |
+
<span style="color:red">The model is currently being Experimentally Fine Tuned to assess LLaMA-3's response to Arabic, following a brief period of fine-tuning. Larger and more sophisticated models will be introduced soon.</span>
|
35 |
+
|
36 |
+
## How to Get Started with the Model
|
37 |
+
|
38 |
+
### Setup
|
39 |
+
```python
|
40 |
+
# Install packages
|
41 |
+
%%capture
|
42 |
+
import torch
|
43 |
+
major_version, minor_version = torch.cuda.get_device_capability()
|
44 |
+
!pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
|
45 |
+
if major_version >= 8:
|
46 |
+
# Use this for new GPUs like Ampere, Hopper GPUs (RTX 30xx, RTX 40xx, A100, H100, L40)
|
47 |
+
!pip install --no-deps packaging ninja einops flash-attn xformers trl peft accelerate bitsandbytes
|
48 |
+
else:
|
49 |
+
# Use this for older GPUs (V100, Tesla T4, RTX 20xx)
|
50 |
+
!pip install --no-deps xformers trl peft accelerate bitsandbytes
|
51 |
+
pass
|
52 |
+
```
|
53 |
+
|
54 |
+
### First, Load the Model
|
55 |
+
```python
|
56 |
+
from unsloth import FastLanguageModel
|
57 |
+
import torch
|
58 |
+
max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!
|
59 |
+
dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
60 |
+
load_in_4bit = True # Use 4bit quantization to reduce memory usage. Can be False.
|
61 |
+
|
62 |
+
|
63 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
64 |
+
model_name = "Omartificial-Intelligence-Space/al-baka-16bit-llama3-8b",
|
65 |
+
max_seq_length = max_seq_length,
|
66 |
+
dtype = dtype,
|
67 |
+
load_in_4bit = load_in_4bit,
|
68 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
69 |
+
)
|
70 |
+
```
|
71 |
+
|
72 |
+
### Second, Try the model
|
73 |
+
```python
|
74 |
+
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
75 |
+
|
76 |
+
### Instruction:
|
77 |
+
{}
|
78 |
+
|
79 |
+
### Input:
|
80 |
+
{}
|
81 |
+
|
82 |
+
### Response:
|
83 |
+
{}"""
|
84 |
+
|
85 |
+
# alpaca_prompt = Copied from above
|
86 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
87 |
+
inputs = tokenizer(
|
88 |
+
[
|
89 |
+
alpaca_prompt.format(
|
90 |
+
"استخدم البيانات المعطاة لحساب الوسيط.", # instruction
|
91 |
+
"[2 ، 3 ، 7 ، 8 ، 10]", # input
|
92 |
+
"", # output - leave this blank for generation!
|
93 |
+
)
|
94 |
+
], return_tensors = "pt").to("cuda")
|
95 |
+
|
96 |
+
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
|
97 |
+
tokenizer.batch_decode(outputs)
|
98 |
+
```
|
99 |
+
|
100 |
+
### Recommendations
|
101 |
+
|
102 |
+
- [unsloth](https://github.com/unslothai/unsloth) for finetuning models. You can get a 2x faster finetuned model which can be exported to any format or uploaded to Hugging Face.
|