|
import webdataset as wds |
|
import kornia |
|
from PIL import Image |
|
import io |
|
import os |
|
import torchvision |
|
from PIL import Image |
|
import glob |
|
import random |
|
import numpy as np |
|
import pytorch_lightning as pl |
|
from tqdm import tqdm |
|
from omegaconf import OmegaConf |
|
from einops import rearrange |
|
import torch |
|
from webdataset.handlers import warn_and_continue |
|
|
|
|
|
from ldm.util import instantiate_from_config |
|
from ldm.data.inpainting.synthetic_mask import gen_large_mask, MASK_MODES |
|
from ldm.data.base import PRNGMixin |
|
|
|
|
|
class DataWithWings(torch.utils.data.IterableDataset): |
|
def __init__(self, min_size, transform=None, target_transform=None): |
|
self.min_size = min_size |
|
self.transform = transform if transform is not None else nn.Identity() |
|
self.target_transform = target_transform if target_transform is not None else nn.Identity() |
|
self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee') |
|
self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e') |
|
self.pwatermark_threshold = 0.8 |
|
self.punsafe_threshold = 0.5 |
|
self.aesthetic_threshold = 5. |
|
self.total_samples = 0 |
|
self.samples = 0 |
|
location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -' |
|
|
|
self.inner_dataset = wds.DataPipeline( |
|
wds.ResampledShards(location), |
|
wds.tarfile_to_samples(handler=wds.warn_and_continue), |
|
wds.shuffle(1000, handler=wds.warn_and_continue), |
|
wds.decode('pilrgb', handler=wds.warn_and_continue), |
|
wds.map(self._add_tags, handler=wds.ignore_and_continue), |
|
wds.select(self._filter_predicate), |
|
wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue), |
|
wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue), |
|
) |
|
|
|
@staticmethod |
|
def _compute_hash(url, text): |
|
if url is None: |
|
url = '' |
|
if text is None: |
|
text = '' |
|
total = (url + text).encode('utf-8') |
|
return mmh3.hash64(total)[0] |
|
|
|
def _add_tags(self, x): |
|
hsh = self._compute_hash(x['json']['url'], x['txt']) |
|
pwatermark, punsafe = self.kv[hsh] |
|
aesthetic = self.kv_aesthetic[hsh][0] |
|
return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic} |
|
|
|
def _punsafe_to_class(self, punsafe): |
|
return torch.tensor(punsafe >= self.punsafe_threshold).long() |
|
|
|
def _filter_predicate(self, x): |
|
try: |
|
return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size |
|
except: |
|
return False |
|
|
|
def __iter__(self): |
|
return iter(self.inner_dataset) |
|
|
|
|
|
def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True): |
|
"""Take a list of samples (as dictionary) and create a batch, preserving the keys. |
|
If `tensors` is True, `ndarray` objects are combined into |
|
tensor batches. |
|
:param dict samples: list of samples |
|
:param bool tensors: whether to turn lists of ndarrays into a single ndarray |
|
:returns: single sample consisting of a batch |
|
:rtype: dict |
|
""" |
|
keys = set.intersection(*[set(sample.keys()) for sample in samples]) |
|
batched = {key: [] for key in keys} |
|
|
|
for s in samples: |
|
[batched[key].append(s[key]) for key in batched] |
|
|
|
result = {} |
|
for key in batched: |
|
if isinstance(batched[key][0], (int, float)): |
|
if combine_scalars: |
|
result[key] = np.array(list(batched[key])) |
|
elif isinstance(batched[key][0], torch.Tensor): |
|
if combine_tensors: |
|
result[key] = torch.stack(list(batched[key])) |
|
elif isinstance(batched[key][0], np.ndarray): |
|
if combine_tensors: |
|
result[key] = np.array(list(batched[key])) |
|
else: |
|
result[key] = list(batched[key]) |
|
return result |
|
|
|
|
|
class WebDataModuleFromConfig(pl.LightningDataModule): |
|
def __init__(self, tar_base, batch_size, train=None, validation=None, |
|
test=None, num_workers=4, multinode=True, min_size=None, |
|
max_pwatermark=1.0, |
|
**kwargs): |
|
super().__init__(self) |
|
print(f'Setting tar base to {tar_base}') |
|
self.tar_base = tar_base |
|
self.batch_size = batch_size |
|
self.num_workers = num_workers |
|
self.train = train |
|
self.validation = validation |
|
self.test = test |
|
self.multinode = multinode |
|
self.min_size = min_size |
|
self.max_pwatermark = max_pwatermark |
|
|
|
def make_loader(self, dataset_config, train=True): |
|
if 'image_transforms' in dataset_config: |
|
image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms] |
|
else: |
|
image_transforms = [] |
|
|
|
image_transforms.extend([torchvision.transforms.ToTensor(), |
|
torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))]) |
|
image_transforms = torchvision.transforms.Compose(image_transforms) |
|
|
|
if 'transforms' in dataset_config: |
|
transforms_config = OmegaConf.to_container(dataset_config.transforms) |
|
else: |
|
transforms_config = dict() |
|
|
|
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey]) |
|
if transforms_config[dkey] != 'identity' else identity |
|
for dkey in transforms_config} |
|
img_key = dataset_config.get('image_key', 'jpeg') |
|
transform_dict.update({img_key: image_transforms}) |
|
|
|
if 'postprocess' in dataset_config: |
|
postprocess = instantiate_from_config(dataset_config['postprocess']) |
|
else: |
|
postprocess = None |
|
|
|
shuffle = dataset_config.get('shuffle', 0) |
|
shardshuffle = shuffle > 0 |
|
|
|
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only |
|
|
|
if self.tar_base == "__improvedaesthetic__": |
|
print("## Warning, loading the same improved aesthetic dataset " |
|
"for all splits and ignoring shards parameter.") |
|
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -" |
|
else: |
|
tars = os.path.join(self.tar_base, dataset_config.shards) |
|
|
|
dset = wds.WebDataset( |
|
tars, |
|
nodesplitter=nodesplitter, |
|
shardshuffle=shardshuffle, |
|
handler=wds.warn_and_continue).repeat().shuffle(shuffle) |
|
print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.') |
|
|
|
dset = (dset |
|
.select(self.filter_keys) |
|
.decode('pil', handler=wds.warn_and_continue) |
|
.select(self.filter_size) |
|
.map_dict(**transform_dict, handler=wds.warn_and_continue) |
|
) |
|
if postprocess is not None: |
|
dset = dset.map(postprocess) |
|
dset = (dset |
|
.batched(self.batch_size, partial=False, |
|
collation_fn=dict_collation_fn) |
|
) |
|
|
|
loader = wds.WebLoader(dset, batch_size=None, shuffle=False, |
|
num_workers=self.num_workers) |
|
|
|
return loader |
|
|
|
def filter_size(self, x): |
|
try: |
|
valid = True |
|
if self.min_size is not None and self.min_size > 1: |
|
try: |
|
valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size |
|
except Exception: |
|
valid = False |
|
if self.max_pwatermark is not None and self.max_pwatermark < 1.0: |
|
try: |
|
valid = valid and x['json']['pwatermark'] <= self.max_pwatermark |
|
except Exception: |
|
valid = False |
|
return valid |
|
except Exception: |
|
return False |
|
|
|
def filter_keys(self, x): |
|
try: |
|
return ("jpg" in x) and ("txt" in x) |
|
except Exception: |
|
return False |
|
|
|
def train_dataloader(self): |
|
return self.make_loader(self.train) |
|
|
|
def val_dataloader(self): |
|
return self.make_loader(self.validation, train=False) |
|
|
|
def test_dataloader(self): |
|
return self.make_loader(self.test, train=False) |
|
|
|
|
|
from ldm.modules.image_degradation import degradation_fn_bsr_light |
|
import cv2 |
|
|
|
class AddLR(object): |
|
def __init__(self, factor, output_size, initial_size=None, image_key="jpg"): |
|
self.factor = factor |
|
self.output_size = output_size |
|
self.image_key = image_key |
|
self.initial_size = initial_size |
|
|
|
def pt2np(self, x): |
|
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy() |
|
return x |
|
|
|
def np2pt(self, x): |
|
x = torch.from_numpy(x)/127.5-1.0 |
|
return x |
|
|
|
def __call__(self, sample): |
|
|
|
x = self.pt2np(sample[self.image_key]) |
|
if self.initial_size is not None: |
|
x = cv2.resize(x, (self.initial_size, self.initial_size), interpolation=2) |
|
x = degradation_fn_bsr_light(x, sf=self.factor)['image'] |
|
x = cv2.resize(x, (self.output_size, self.output_size), interpolation=2) |
|
x = self.np2pt(x) |
|
sample['lr'] = x |
|
return sample |
|
|
|
class AddBW(object): |
|
def __init__(self, image_key="jpg"): |
|
self.image_key = image_key |
|
|
|
def pt2np(self, x): |
|
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy() |
|
return x |
|
|
|
def np2pt(self, x): |
|
x = torch.from_numpy(x)/127.5-1.0 |
|
return x |
|
|
|
def __call__(self, sample): |
|
|
|
x = sample[self.image_key] |
|
w = torch.rand(3, device=x.device) |
|
w /= w.sum() |
|
out = torch.einsum('hwc,c->hw', x, w) |
|
|
|
|
|
sample['lr'] = out.unsqueeze(-1).tile(1,1,3) |
|
return sample |
|
|
|
class AddMask(PRNGMixin): |
|
def __init__(self, mode="512train", p_drop=0.): |
|
super().__init__() |
|
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"' |
|
self.make_mask = MASK_MODES[mode] |
|
self.p_drop = p_drop |
|
|
|
def __call__(self, sample): |
|
|
|
x = sample['jpg'] |
|
mask = self.make_mask(self.prng, x.shape[0], x.shape[1]) |
|
if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]): |
|
mask = np.ones_like(mask) |
|
mask[mask < 0.5] = 0 |
|
mask[mask > 0.5] = 1 |
|
mask = torch.from_numpy(mask[..., None]) |
|
sample['mask'] = mask |
|
sample['masked_image'] = x * (mask < 0.5) |
|
return sample |
|
|
|
|
|
class AddEdge(PRNGMixin): |
|
def __init__(self, mode="512train", mask_edges=True): |
|
super().__init__() |
|
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"' |
|
self.make_mask = MASK_MODES[mode] |
|
self.n_down_choices = [0] |
|
self.sigma_choices = [1, 2] |
|
self.mask_edges = mask_edges |
|
|
|
@torch.no_grad() |
|
def __call__(self, sample): |
|
|
|
x = sample['jpg'] |
|
|
|
mask = self.make_mask(self.prng, x.shape[0], x.shape[1]) |
|
mask[mask < 0.5] = 0 |
|
mask[mask > 0.5] = 1 |
|
mask = torch.from_numpy(mask[..., None]) |
|
sample['mask'] = mask |
|
|
|
n_down_idx = self.prng.choice(len(self.n_down_choices)) |
|
sigma_idx = self.prng.choice(len(self.sigma_choices)) |
|
|
|
n_choices = len(self.n_down_choices)*len(self.sigma_choices) |
|
raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx), |
|
(len(self.n_down_choices), len(self.sigma_choices))) |
|
normalized_idx = raveled_idx/max(1, n_choices-1) |
|
|
|
n_down = self.n_down_choices[n_down_idx] |
|
sigma = self.sigma_choices[sigma_idx] |
|
|
|
kernel_size = 4*sigma+1 |
|
kernel_size = (kernel_size, kernel_size) |
|
sigma = (sigma, sigma) |
|
canny = kornia.filters.Canny( |
|
low_threshold=0.1, |
|
high_threshold=0.2, |
|
kernel_size=kernel_size, |
|
sigma=sigma, |
|
hysteresis=True, |
|
) |
|
y = (x+1.0)/2.0 |
|
y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous() |
|
|
|
|
|
for i_down in range(n_down): |
|
size = min(y.shape[-2], y.shape[-1])//2 |
|
y = kornia.geometry.transform.resize(y, size, antialias=True) |
|
|
|
|
|
_, y = canny(y) |
|
|
|
if n_down > 0: |
|
size = x.shape[0], x.shape[1] |
|
y = kornia.geometry.transform.resize(y, size, interpolation="nearest") |
|
|
|
y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous() |
|
y = y*2.0-1.0 |
|
|
|
if self.mask_edges: |
|
sample['masked_image'] = y * (mask < 0.5) |
|
else: |
|
sample['masked_image'] = y |
|
sample['mask'] = torch.zeros_like(sample['mask']) |
|
|
|
|
|
sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx |
|
|
|
return sample |
|
|
|
|
|
def example00(): |
|
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -" |
|
dataset = wds.WebDataset(url) |
|
example = next(iter(dataset)) |
|
for k in example: |
|
print(k, type(example[k])) |
|
|
|
print(example["__key__"]) |
|
for k in ["json", "txt"]: |
|
print(example[k].decode()) |
|
|
|
image = Image.open(io.BytesIO(example["jpg"])) |
|
outdir = "tmp" |
|
os.makedirs(outdir, exist_ok=True) |
|
image.save(os.path.join(outdir, example["__key__"] + ".png")) |
|
|
|
|
|
def load_example(example): |
|
return { |
|
"key": example["__key__"], |
|
"image": Image.open(io.BytesIO(example["jpg"])), |
|
"text": example["txt"].decode(), |
|
} |
|
|
|
|
|
for i, example in tqdm(enumerate(dataset)): |
|
ex = load_example(example) |
|
print(ex["image"].size, ex["text"]) |
|
if i >= 100: |
|
break |
|
|
|
|
|
def example01(): |
|
|
|
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -" |
|
|
|
batch_size = 3 |
|
shuffle_buffer = 10000 |
|
dset = wds.WebDataset( |
|
url, |
|
nodesplitter=wds.shardlists.split_by_node, |
|
shardshuffle=True, |
|
) |
|
dset = (dset |
|
.shuffle(shuffle_buffer, initial=shuffle_buffer) |
|
.decode('pil', handler=warn_and_continue) |
|
.batched(batch_size, partial=False, |
|
collation_fn=dict_collation_fn) |
|
) |
|
|
|
num_workers = 2 |
|
loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers) |
|
|
|
batch_sizes = list() |
|
keys_per_epoch = list() |
|
for epoch in range(5): |
|
keys = list() |
|
for batch in tqdm(loader): |
|
batch_sizes.append(len(batch["__key__"])) |
|
keys.append(batch["__key__"]) |
|
|
|
for bs in batch_sizes: |
|
assert bs==batch_size |
|
print(f"{len(batch_sizes)} batches of size {batch_size}.") |
|
batch_sizes = list() |
|
|
|
keys_per_epoch.append(keys) |
|
for i_batch in [0, 1, -1]: |
|
print(f"Batch {i_batch} of epoch {epoch}:") |
|
print(keys[i_batch]) |
|
print("next epoch.") |
|
|
|
|
|
def example02(): |
|
from omegaconf import OmegaConf |
|
from torch.utils.data.distributed import DistributedSampler |
|
from torch.utils.data import IterableDataset |
|
from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler |
|
from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator |
|
|
|
|
|
|
|
config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml") |
|
datamod = WebDataModuleFromConfig(**config["data"]["params"]) |
|
dataloader = datamod.train_dataloader() |
|
|
|
for batch in dataloader: |
|
print(batch.keys()) |
|
print(batch["jpg"].shape) |
|
break |
|
|
|
|
|
def example03(): |
|
|
|
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -" |
|
dataset = wds.WebDataset(tars) |
|
|
|
def filter_keys(x): |
|
try: |
|
return ("jpg" in x) and ("txt" in x) |
|
except Exception: |
|
return False |
|
|
|
def filter_size(x): |
|
try: |
|
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512 |
|
except Exception: |
|
return False |
|
|
|
def filter_watermark(x): |
|
try: |
|
return x['json']['pwatermark'] < 0.5 |
|
except Exception: |
|
return False |
|
|
|
dataset = (dataset |
|
.select(filter_keys) |
|
.decode('pil', handler=wds.warn_and_continue)) |
|
n_save = 20 |
|
n_total = 0 |
|
n_large = 0 |
|
n_large_nowm = 0 |
|
for i, example in enumerate(dataset): |
|
n_total += 1 |
|
if filter_size(example): |
|
n_large += 1 |
|
if filter_watermark(example): |
|
n_large_nowm += 1 |
|
if n_large_nowm < n_save+1: |
|
image = example["jpg"] |
|
image.save(os.path.join("tmp", f"{n_large_nowm-1:06}.png")) |
|
|
|
if i%500 == 0: |
|
print(i) |
|
print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%") |
|
if n_large > 0: |
|
print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%") |
|
|
|
|
|
|
|
def example04(): |
|
|
|
for i_shard in range(60208)[::-1]: |
|
print(i_shard) |
|
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard) |
|
dataset = wds.WebDataset(tars) |
|
|
|
def filter_keys(x): |
|
try: |
|
return ("jpg" in x) and ("txt" in x) |
|
except Exception: |
|
return False |
|
|
|
def filter_size(x): |
|
try: |
|
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512 |
|
except Exception: |
|
return False |
|
|
|
dataset = (dataset |
|
.select(filter_keys) |
|
.decode('pil', handler=wds.warn_and_continue)) |
|
try: |
|
example = next(iter(dataset)) |
|
except Exception: |
|
print(f"Error @ {i_shard}") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
example03() |
|
|
|
|