|
from typing import List, Tuple |
|
from scipy import interpolate |
|
import numpy as np |
|
import torch |
|
import matplotlib.pyplot as plt |
|
from IPython.display import clear_output |
|
import abc |
|
|
|
|
|
class GuideModel(torch.nn.Module, abc.ABC): |
|
def __init__(self) -> None: |
|
super().__init__() |
|
|
|
@abc.abstractmethod |
|
def preprocess(self, x_img): |
|
pass |
|
|
|
@abc.abstractmethod |
|
def compute_loss(self, inp): |
|
pass |
|
|
|
|
|
class Guider(torch.nn.Module): |
|
def __init__(self, sampler, guide_model, scale=1.0, verbose=False): |
|
"""Apply classifier guidance |
|
|
|
Specify a guidance scale as either a scalar |
|
Or a schedule as a list of tuples t = 0->1 and scale, e.g. |
|
[(0, 10), (0.5, 20), (1, 50)] |
|
""" |
|
super().__init__() |
|
self.sampler = sampler |
|
self.index = 0 |
|
self.show = verbose |
|
self.guide_model = guide_model |
|
self.history = [] |
|
|
|
if isinstance(scale, (Tuple, List)): |
|
times = np.array([x[0] for x in scale]) |
|
values = np.array([x[1] for x in scale]) |
|
self.scale_schedule = {"times": times, "values": values} |
|
else: |
|
self.scale_schedule = float(scale) |
|
|
|
self.ddim_timesteps = sampler.ddim_timesteps |
|
self.ddpm_num_timesteps = sampler.ddpm_num_timesteps |
|
|
|
|
|
def get_scales(self): |
|
if isinstance(self.scale_schedule, float): |
|
return len(self.ddim_timesteps)*[self.scale_schedule] |
|
|
|
interpolater = interpolate.interp1d(self.scale_schedule["times"], self.scale_schedule["values"]) |
|
fractional_steps = np.array(self.ddim_timesteps)/self.ddpm_num_timesteps |
|
return interpolater(fractional_steps) |
|
|
|
def modify_score(self, model, e_t, x, t, c): |
|
|
|
|
|
scale = self.get_scales()[self.index] |
|
|
|
if (scale == 0): |
|
return e_t |
|
|
|
sqrt_1ma = self.sampler.ddim_sqrt_one_minus_alphas[self.index].to(x.device) |
|
with torch.enable_grad(): |
|
x_in = x.detach().requires_grad_(True) |
|
pred_x0 = model.predict_start_from_noise(x_in, t=t, noise=e_t) |
|
x_img = model.first_stage_model.decode((1/0.18215)*pred_x0) |
|
|
|
inp = self.guide_model.preprocess(x_img) |
|
loss = self.guide_model.compute_loss(inp) |
|
grads = torch.autograd.grad(loss.sum(), x_in)[0] |
|
correction = grads * scale |
|
|
|
if self.show: |
|
clear_output(wait=True) |
|
print(loss.item(), scale, correction.abs().max().item(), e_t.abs().max().item()) |
|
self.history.append([loss.item(), scale, correction.min().item(), correction.max().item()]) |
|
plt.imshow((inp[0].detach().permute(1,2,0).clamp(-1,1).cpu()+1)/2) |
|
plt.axis('off') |
|
plt.show() |
|
plt.imshow(correction[0][0].detach().cpu()) |
|
plt.axis('off') |
|
plt.show() |
|
|
|
|
|
e_t_mod = e_t - sqrt_1ma*correction |
|
if self.show: |
|
fig, axs = plt.subplots(1, 3) |
|
axs[0].imshow(e_t[0][0].detach().cpu(), vmin=-2, vmax=+2) |
|
axs[1].imshow(e_t_mod[0][0].detach().cpu(), vmin=-2, vmax=+2) |
|
axs[2].imshow(correction[0][0].detach().cpu(), vmin=-2, vmax=+2) |
|
plt.show() |
|
self.index += 1 |
|
return e_t_mod |