File size: 7,934 Bytes
f9d725d e96aa1e 65eca52 e96aa1e 65eca52 e96aa1e 65eca52 f9d725d e96aa1e c493ea3 e96aa1e dea03d3 fa3b339 9b13660 fa3b339 4da1dd4 fa3b339 65eca52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 |
---
language:
- en
license: apache-2.0
tags:
- sft
pipeline_tag: text-generation
widget:
- text: <|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
- text: <|prompter|>What's the Earth total population<|endoftext|><|assistant|>
- text: <|prompter|>Write a story about future of AI development<|endoftext|><|assistant|>
model-index:
- name: oasst-sft-4-pythia-12b-epoch-3.5
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 45.73
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 68.59
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.82
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 37.81
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 65.9
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 3.03
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5
name: Open LLM Leaderboard
---
# Open-Assistant SFT-4 12B Model
This is the 4th iteration English supervised-fine-tuning (SFT) model of
the [Open-Assistant](https://github.com/LAION-AI/Open-Assistant) project.
It is based on a Pythia 12B that was fine-tuned on human demonstrations
of assistant conversations collected through the
[https://open-assistant.io/](https://open-assistant.io/) human feedback web
app before March 25, 2023.
## Model Details
- **Developed by:** [Open-Assistant Contributors](https://open-assistant.io/)
- **Model type:** Transformer-based Language Model
- **Language:** English
- **Finetuned from:** [EleutherAI / pythia-12b-deduped](https://huggingface.co/EleutherAI/pythia-12b-deduped)
- **Code:** [Open-Assistant/model/model_training](https://github.com/LAION-AI/Open-Assistant/tree/main/model/model_training)
- **Demo:** [Continuations for 250 random prompts](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-04-03_andreaskoepf_oasst-sft-4-pythia-12b-epoch-3_5_sampling_noprefix_lottery.json%0Ahttps%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Fchat-gpt%2F2023-04-11_gpt-3.5-turbo_lottery.json)
- **License:** Apache 2.0
- **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)
## Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token.
Input prompt example:
```
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
```
The input ends with the `<|assistant|>` token to signal that the model should
start generating the assistant reply.
## Dev Details
- wandb: https://wandb.ai/open-assistant/supervised-finetuning/runs/770a0t41
- base model: [andreaskoepf/pythia-12b-pre-2000](https://huggingface.co/andreaskoepf/pythia-12b-pre-2000)
- checkpoint: 4000 steps
command: `deepspeed trainer_sft.py --configs defaults reference-data reference-pythia-12b --cache_dir /home/ubuntu/data_cache --output_dir .saved/oasst-sft-3-pythia-12b-reference_2kpre --num_train_epochs 8 --residual_dropout 0.2 --deepspeed --use_flash_attention true --model_name andreaskoepf/pythia-12b-pre-2000`
data:
```
reference-data:
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk"
input_file_path: 2023-03-25_oasst_research_ready_synth_labels.jsonl.gz
val_split: 0.05
- alpaca
sort_by_length: false
use_custom_sampler: false
```
pythia:
```
reference-pythia-12b:
dtype: fp16
log_dir: "pythia_log_12b"
learning_rate: 6e-6
model_name: EleutherAI/pythia-12b-deduped
output_dir: pythia_model_12b
weight_decay: 0.0
max_length: 2048
warmup_steps: 100
gradient_checkpointing: true
gradient_accumulation_steps: 2
per_device_train_batch_size: 4
per_device_eval_batch_size: 4
eval_steps: 100
save_steps: 1000
num_train_epochs: 8
save_total_limit: 4
```
zero config:
```
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto",
"total_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 2,
"allgather_partitions": true,
"allgather_bucket_size": 1e9,
"overlap_comm": false,
"reduce_scatter": true,
"reduce_bucket_size": 1e9,
"contiguous_gradients": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_OpenAssistant__oasst-sft-4-pythia-12b-epoch-3.5)
| Metric |Value|
|---------------------------------|----:|
|Avg. |41.31|
|AI2 Reasoning Challenge (25-Shot)|45.73|
|HellaSwag (10-Shot) |68.59|
|MMLU (5-Shot) |26.82|
|TruthfulQA (0-shot) |37.81|
|Winogrande (5-shot) |65.90|
|GSM8k (5-shot) | 3.03|
|