Upload folder using huggingface_hub
Browse files- Evaluation.txt +1267 -0
- config.json +26 -0
- generation_config.json +6 -0
- pytorch_model-00001-of-00007.bin +3 -0
- pytorch_model-00002-of-00007.bin +3 -0
- pytorch_model-00003-of-00007.bin +3 -0
- pytorch_model-00004-of-00007.bin +3 -0
- pytorch_model-00005-of-00007.bin +3 -0
- pytorch_model-00006-of-00007.bin +3 -0
- pytorch_model-00007-of-00007.bin +3 -0
- pytorch_model.bin.index.json +442 -0
Evaluation.txt
ADDED
@@ -0,0 +1,1267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Question: 写一段Python程序。
|
2 |
+
写一个程序,打印数字1到100。但是当数字可以被3整除时,打印“Cat”;当数字可以被5整除时,打印“Dog”。如果可以同时被3和5整除,则打印“Panda”。
|
3 |
+
Answer: 下面是实现该需求的 Python 代码:
|
4 |
+
|
5 |
+
```python
|
6 |
+
for i in range(1, 101):
|
7 |
+
if i % 3 == 0:
|
8 |
+
print("Cat")
|
9 |
+
elif i % 5 == 0:
|
10 |
+
print("Dog")
|
11 |
+
elif i % 3 == 0 and i % 5 == 0:
|
12 |
+
print("Panda")
|
13 |
+
else:
|
14 |
+
print(i)
|
15 |
+
```
|
16 |
+
这里使用 for 循环遍历数字 1 到 100。对于每个数字,使用 if/elif/else 结构来判断可以整除哪些数字并输出相应的内容。如果一个数字可以同时被 3 和 5 整除,那么就会执行第三个分支中的代码块。最终打印出所有的数字及其转换后的表示。
|
17 |
+
|
18 |
+
================================================================================
|
19 |
+
|
20 |
+
Question: 写一段Python程序。
|
21 |
+
编写一个函数,接受一个字符串,然后返回倒序的字符串。
|
22 |
+
Answer: 以下是实现您要求功能的 Python 代码:
|
23 |
+
|
24 |
+
```python
|
25 |
+
def reverse_string(text):
|
26 |
+
return text[::-1]
|
27 |
+
|
28 |
+
text = "Hello World" # 待倒序的字符串
|
29 |
+
result = reverse_string(text) # 执行函数,获取倒序的字符串
|
30 |
+
print(result) # 输出结果
|
31 |
+
```
|
32 |
+
|
33 |
+
运行上面的代码,就可以得到将“Hello World”这个输入字符串倒序的结果:"dlroW olleH"。如果您希望反转的字符串不包括空格或其他标点符号,可以通过`strip()`方法去掉字符串两端的空格和标点符号。比如:
|
34 |
+
|
35 |
+
```python
|
36 |
+
def reverse_string(text):
|
37 |
+
text = text.strip() # 去除两端的空格和标点符号
|
38 |
+
return text[::-1]
|
39 |
+
```
|
40 |
+
|
41 |
+
这样就可以使字符串正确排序并去除多余空格、标点符号等无关信息。
|
42 |
+
|
43 |
+
================================================================================
|
44 |
+
|
45 |
+
Question: 写一段Python程序。
|
46 |
+
给你一颗二叉树的根节点,写一个函数检查这棵树是否对称。这里的对称是指:如果将这棵树沿着中轴线从上往下切开,两侧得到的二叉树在结构上完全一样,但是节点的值完全相反(比如,一侧节点的值为4,另一侧对应位置的节点值为-4)。
|
47 |
+
Answer: 好的,以下是判断二叉树是否对称的 Python 程序:
|
48 |
+
|
49 |
+
```python
|
50 |
+
class TreeNode:
|
51 |
+
def __init__(self, val=0, left=None, right=None):
|
52 |
+
self.val = val
|
53 |
+
self.left = left
|
54 |
+
self.right = right
|
55 |
+
|
56 |
+
def isSymmetric(root):
|
57 |
+
"""
|
58 |
+
参数:
|
59 |
+
root - 二叉树的根节点
|
60 |
+
返回值:
|
61 |
+
布尔型 - 表示该二叉树是否对称
|
62 |
+
"""
|
63 |
+
# 边界情况:如果根节点为空或只有一个根节点,则该二叉树一定是对称的
|
64 |
+
if not root or (not root.left and not root.right):
|
65 |
+
return True
|
66 |
+
|
67 |
+
# 递归实现函数,将左右子树依次比较
|
68 |
+
def compareTrees(leftNode, rightNode):
|
69 |
+
# 当左右子树都为空时,递归止步条件已满足
|
70 |
+
if not leftNode and not rightNode:
|
71 |
+
return True
|
72 |
+
|
73 |
+
# 当左右子树有一个节点为空时,该二叉树一定不对称
|
74 |
+
if not leftNode or not rightNode:
|
75 |
+
return False
|
76 |
+
|
77 |
+
# 当左右子树节点值不相等或左右子树的值不相对称时,该二叉树一定不对称
|
78 |
+
if leftNode.val != rightNode.val or (isSymmetric(leftNode) != isSymmetric(rightNode)):
|
79 |
+
return False
|
80 |
+
|
81 |
+
# 继续执行递归操作,比较左子树的右子树和右子树的左子树
|
82 |
+
return compareTrees(leftNode.left, rightNode.right) and compareTrees(leftNode.right, rightNode.left)
|
83 |
+
|
84 |
+
# 调用 compareTrees 函数进行比较并返回结果
|
85 |
+
return compareTrees(root.left, root.right)
|
86 |
+
```
|
87 |
+
|
88 |
+
以上代码使用递归思想,首先判断根节点是否为空或单一,如果是则直接返回 True;然后递归地比较左右子树,如果左右子树节点数不相同、节点值不对称或者左右子树的对称性不同,则该二叉树一定不对称,返回 False;最后,比较左子树的右子树和右子树的左子树,如果均满足节点对称性,则返回 True;如果没有则返回 False。
|
89 |
+
|
90 |
+
================================================================================
|
91 |
+
|
92 |
+
Question: 写一段Python程序。
|
93 |
+
用websocket,设计并实现一个多人在线版扫雷游戏。需要考虑的功能包括如何生成游戏板,玩家如何交互以及如何判断游戏结束等。
|
94 |
+
Answer: 这是一个比较复杂的任务,需要进行详细的设计和开发。以下是大体的思路:
|
95 |
+
|
96 |
+
1. 使用 Flask-SocketIO 库来建立 WebSocket 服务器。首先安装该库:
|
97 |
+
```
|
98 |
+
pip install flask-socketio
|
99 |
+
```
|
100 |
+
|
101 |
+
2. 编写 Flask-SocketIO 应用程序。可以使用类似于以下代码的结构:
|
102 |
+
```python
|
103 |
+
from flask import Flask, render_template
|
104 |
+
from flask_socketio import SocketIO, emit
|
105 |
+
|
106 |
+
app = Flask(__name__)
|
107 |
+
app.config['SECRET_KEY'] = 'secret!'
|
108 |
+
socketio = SocketIO(app)
|
109 |
+
|
110 |
+
@app.route('/')
|
111 |
+
def index():
|
112 |
+
return render_template('index.html')
|
113 |
+
|
114 |
+
@socketio.on('connect')
|
115 |
+
def test_connect():
|
116 |
+
emit('my_response', {'data': 'Connected'})
|
117 |
+
|
118 |
+
if __name__ == '__main__':
|
119 |
+
socketio.run(app)
|
120 |
+
```
|
121 |
+
其中 `test_connect()` 是连接时发送信息给客户端的函数,`my_response` 是自定义的事件名称。
|
122 |
+
|
123 |
+
3. 在客户端使用 JavaScript 来处理 WebSocket 连接,使用 jQuery 库来简化代码。可以使用类似以下代码的结构:
|
124 |
+
```javascript
|
125 |
+
var socket = io.connect('http://' + document.domain + ':' + location.port);
|
126 |
+
|
127 |
+
socket.on('connect', function() {
|
128 |
+
socket.emit('my_event', {data: 'I\'m connected!'});
|
129 |
+
});
|
130 |
+
```
|
131 |
+
这里使用了 jQuery 库,而 `my_event` 则是服务器端自定义的事件名称。在连接成功后会发送一个字符串给服务器端。
|
132 |
+
|
133 |
+
4. 设计游戏板的生成逻辑,即如何在服务器端生成随机的地雷位置,随机生成雷周围的地图信息(地雷数量、空白方块等),然后将这些信息发送到客户端。
|
134 |
+
|
135 |
+
5. 设计游戏状态的交互逻辑,即如何通过 WebSocket 消息来更新游戏状态。例如,当一个玩家点击某个方块,发出一个 WebSocket 消息到服务器端,服务器端通过解析传递的坐标位置,返回给客户端相关信息,客户端根据信息更新自己的游戏状态。
|
136 |
+
|
137 |
+
6. 将所有逻辑结合起来形成完整的多人在线版扫雷游戏。
|
138 |
+
|
139 |
+
以上只是一个简单的框架,具体实现还需要根据设计进行调整。同时,在代码实现过程中,要注意网络安全以及数据加密等问题。
|
140 |
+
|
141 |
+
================================================================================
|
142 |
+
|
143 |
+
Question: 使用 JavaScript、HTML 和 CSS 创建一个简单的计算器,支持基本的加减乘除运算。
|
144 |
+
Answer: 好的,下面是一个简单的计算器示例,它支持基本的加减乘除运算。使用 JavaScript、HTML 和 CSS 实现,具体如下:
|
145 |
+
|
146 |
+
```html
|
147 |
+
<!DOCTYPE html>
|
148 |
+
<html>
|
149 |
+
<head>
|
150 |
+
<title>JavaScript Calculator</title>
|
151 |
+
<style>
|
152 |
+
body {
|
153 |
+
font-family: Arial, sans-serif;
|
154 |
+
}
|
155 |
+
|
156 |
+
#calculator {
|
157 |
+
margin: auto;
|
158 |
+
width: 200px;
|
159 |
+
}
|
160 |
+
|
161 |
+
input[type="text"], input[type="number"] {
|
162 |
+
width: 150px;
|
163 |
+
padding: 5px;
|
164 |
+
margin: 5px;
|
165 |
+
font-size: 16px;
|
166 |
+
text-align: right;
|
167 |
+
}
|
168 |
+
|
169 |
+
button {
|
170 |
+
padding: 5px 10px;
|
171 |
+
font-size: 16px;
|
172 |
+
cursor: pointer;
|
173 |
+
}
|
174 |
+
|
175 |
+
table {
|
176 |
+
border-spacing: 5px;
|
177 |
+
border-collapse: separate;
|
178 |
+
}
|
179 |
+
|
180 |
+
button:hover {
|
181 |
+
background-color: #EEE;
|
182 |
+
color: #333;
|
183 |
+
}
|
184 |
+
|
185 |
+
button.operator {
|
186 |
+
background-color: #DDD;
|
187 |
+
color: #333;
|
188 |
+
}
|
189 |
+
|
190 |
+
button.operator:hover {
|
191 |
+
background-color: #BBB;
|
192 |
+
color: #333;
|
193 |
+
}
|
194 |
+
|
195 |
+
button.clear {
|
196 |
+
background-color: #F36;
|
197 |
+
color: #FFF;
|
198 |
+
}
|
199 |
+
|
200 |
+
button.clear:hover {
|
201 |
+
background-color: #C44;
|
202 |
+
color: #FFF;
|
203 |
+
}
|
204 |
+
</style>
|
205 |
+
</head>
|
206 |
+
<body>
|
207 |
+
<div id="calculator">
|
208 |
+
<input type="text" id="result" placeholder="0" readonly>
|
209 |
+
<br>
|
210 |
+
<table>
|
211 |
+
<tr><td colspan="4"><button class="operator" onclick="operation('+')">+</button></td></tr>
|
212 |
+
<tr>
|
213 |
+
<td><button onclick="insert('7')">7</button></td>
|
214 |
+
<td><button onclick="insert('8')">8</button></td>
|
215 |
+
<td><button onclick="insert('9')">9</button></td>
|
216 |
+
<td><button class="operator" onclick="operation('-')">-</button></td>
|
217 |
+
</tr>
|
218 |
+
<tr>
|
219 |
+
<td><button onclick="insert('4')">4</button></td>
|
220 |
+
<td><button onclick="insert('5')">5</button></td>
|
221 |
+
<td><button onclick="insert('6')">6</button></td>
|
222 |
+
<td><button class="operator" onclick="operation('*')">x</button></td>
|
223 |
+
</tr>
|
224 |
+
<tr>
|
225 |
+
<td><button onclick="insert('1')">1</button></td>
|
226 |
+
<td><button onclick="insert('2')">2</button></td>
|
227 |
+
<td><button onclick="insert('3')">3</button></td>
|
228 |
+
<td><button class="operator" onclick="operation('/')">÷</button></td>
|
229 |
+
</tr>
|
230 |
+
<tr><td colspan="2"><button id="clear" onclick="clearResult()">CE</button></td><td colspan="2"><button class="clear" onclick="clearAll()">C</button></td></tr>
|
231 |
+
<tr>
|
232 |
+
<td><button onclick="insert('0')">0</button></td>
|
233 |
+
<td><button onclick="insert('.')">.</button></td>
|
234 |
+
<td><button id="equal" onclick="calculate()">=</
|
235 |
+
================================================================================
|
236 |
+
|
237 |
+
Question: 利用公开的天气 API,用 Rust 创建一个可以显示当前天气信息的控制台应用。用户可以输入他们的城市名称来获取天气信息。
|
238 |
+
Answer: 好的,我可以帮您完成这个任务。我们可以使用 OpenWeatherMap API 来获取天气数据。
|
239 |
+
|
240 |
+
首先,我们需要安装 Rust 和 Cargo。请按以下步骤操作:
|
241 |
+
|
242 |
+
1. 访问 Rust 官网 https://www.rust-lang.org/tools/install 并按照说明安装 Rust 和 Cargo。
|
243 |
+
|
244 |
+
2. 确认是否成功安装 Rust 和 Cargo 的命令行工具。在终端或者命令提示符中输入下面的命令,如果输出包含版本信息,说明已经安装成功。
|
245 |
+
|
246 |
+
```
|
247 |
+
rustc --version
|
248 |
+
cargo --version
|
249 |
+
```
|
250 |
+
|
251 |
+
如果没有安装,请参考官方文档进行安装。
|
252 |
+
|
253 |
+
接下来,我们可以使用 Rust 的 reqwest crate 来发起 HTTP 请求,使用 serde_json crate 来解析返回的 JSON 数据。
|
254 |
+
|
255 |
+
在您的项目目录下创建一个新的 Rust 项目,我们将采用 Cargo 来启动、构建、和管理项目的依赖关系。执行以下命令:
|
256 |
+
|
257 |
+
```
|
258 |
+
cargo new weather-app
|
259 |
+
cd weather-app
|
260 |
+
```
|
261 |
+
|
262 |
+
现在我们已经创建了一个新的 Rust 项目,并且我们已经准备好了一个空项目。我们可以在 Cargo.toml 文件中添加必要的依赖库。打开 Cargo.toml 文件,并添加以下内容:
|
263 |
+
|
264 |
+
```
|
265 |
+
[dependencies]
|
266 |
+
reqwest = { version = "0.11", features = ["blocking", "json"] }
|
267 |
+
serde = { version = "1.0", features = ["derive"] }
|
268 |
+
serde_derive = "1.0"
|
269 |
+
serde_json = "1.0"
|
270 |
+
```
|
271 |
+
|
272 |
+
这些依赖项包含了我们所需的网络请求和 JSON 解析功能。
|
273 |
+
|
274 |
+
现在,我们可以开始编写代码了。首先,我们需要解析命令行参数,以便让用户输入城市名称,然后将城市名称传递到 OpenWeatherMap API 上进行查询。
|
275 |
+
|
276 |
+
修改 main.rs 文件,添加以下内容:
|
277 |
+
|
278 |
+
```rust
|
279 |
+
use std::env;
|
280 |
+
|
281 |
+
#[tokio::main]
|
282 |
+
async fn main() -> Result<(), Box<dyn std::error::Error>> {
|
283 |
+
let api_key = "YOUR_API_KEY"; // Replace with your own API key
|
284 |
+
let args: Vec<String> = env::args().collect();
|
285 |
+
|
286 |
+
if args.len() < 2 {
|
287 |
+
println!("Please provide the name of a city.");
|
288 |
+
return Ok(());
|
289 |
+
}
|
290 |
+
|
291 |
+
let city_name = &args[1];
|
292 |
+
let url = format!(
|
293 |
+
"http://api.openweathermap.org/data/2.5/weather?q={}&units=metric&APPID={}",
|
294 |
+
city_name, api_key
|
295 |
+
);
|
296 |
+
|
297 |
+
let client = reqwest::blocking::Client::new();
|
298 |
+
let res = client.get(&url).send()?;
|
299 |
+
|
300 |
+
let body = res.text()?;
|
301 |
+
let data: serde_json::Value = serde_json::from_str(&body)?;
|
302 |
+
|
303 |
+
println!("The temperature in {} is {}°C.", city_name, data["main"]["temp"].as_f32().unwrap());
|
304 |
+
|
305 |
+
Ok(())
|
306 |
+
}
|
307 |
+
```
|
308 |
+
|
309 |
+
请注意,我们使用 rustlings 工具为您生成了一个基本的主函数,并导入了需要的 crate(例如,`std::env`、`reqwest::blocking::Client` 等)。
|
310 |
+
|
311 |
+
现在,我们需要替换 YOUR_API_KEY 为您自己的 API 密钥。如果您还没有注册 OpenWeatherMap 账户或 API 密钥,请从其官方网站 https
|
312 |
+
================================================================================
|
313 |
+
|
314 |
+
Question: 设计一个页面,该页面有一个开关可以在两个或更多主题(例如,深色和浅色主题)之间切换。
|
315 |
+
Answer: 好的,让我们来设计这个页面吧。首先,为了实现开关,我们需要使用 JavaScript。
|
316 |
+
|
317 |
+
1. HTML:
|
318 |
+
|
319 |
+
我们在 HTML 中需要包含一个按钮标签,作为切换主题的开关:
|
320 |
+
|
321 |
+
```html
|
322 |
+
<button id="toggle-theme" onclick="toggleTheme()">深色模式</button>
|
323 |
+
```
|
324 |
+
|
325 |
+
2. CSS:
|
326 |
+
|
327 |
+
接下来,我们需要预定义两种主题的样式:
|
328 |
+
|
329 |
+
```css
|
330 |
+
/* Dark theme */
|
331 |
+
body {
|
332 |
+
background-color: #333;
|
333 |
+
color: #fff;
|
334 |
+
}
|
335 |
+
|
336 |
+
/* Light theme */
|
337 |
+
body.light-theme {
|
338 |
+
background-color: #f0f0f0;
|
339 |
+
color: #333;
|
340 |
+
}
|
341 |
+
```
|
342 |
+
|
343 |
+
3. JavaScript:
|
344 |
+
|
345 |
+
最后,我们需要使用 JavaScript 来切换主题。在 `toggleTheme()` 函数中,我们将检查当前主题是深色还是浅色,然后相应地更新 CSS 类名。
|
346 |
+
|
347 |
+
```javascript
|
348 |
+
function toggleTheme() {
|
349 |
+
var body = document.body;
|
350 |
+
if (body.classList.contains("dark-theme")) {
|
351 |
+
body.className = "light-theme";
|
352 |
+
} else {
|
353 |
+
body.className = "dark-theme";
|
354 |
+
}
|
355 |
+
}
|
356 |
+
|
357 |
+
// Set the initial theme to dark
|
358 |
+
window.onload = function () {
|
359 |
+
document.body.classList.add("dark-theme");
|
360 |
+
};
|
361 |
+
```
|
362 |
+
|
363 |
+
这就是一个包含切换开关的页面的基本实现。用户可以单击按钮来切换深色和浅色主题。
|
364 |
+
|
365 |
+
================================================================================
|
366 |
+
|
367 |
+
Question: 使用 JavaScript、HTML 和 CSS 创建一个图片轮播效果,每隔3秒,图片自动滑动切换,同时支持用户点击导航点进行切换。
|
368 |
+
Answer: 好的,以下是一个简单的图片轮播框架:
|
369 |
+
|
370 |
+
HTML:
|
371 |
+
|
372 |
+
```html
|
373 |
+
<div class="slider">
|
374 |
+
<img src="image1.jpg"/>
|
375 |
+
<img src="image2.jpg"/>
|
376 |
+
<img src="image3.jpg"/>
|
377 |
+
<span class="prev"><</span>
|
378 |
+
<span class="next">></span>
|
379 |
+
<div class="dots">
|
380 |
+
<span class="dot active"></span>
|
381 |
+
<span class="dot"></span>
|
382 |
+
<span class="dot"></span>
|
383 |
+
</div>
|
384 |
+
</div>
|
385 |
+
```
|
386 |
+
|
387 |
+
CSS:
|
388 |
+
|
389 |
+
```css
|
390 |
+
.slider {
|
391 |
+
position: relative;
|
392 |
+
overflow: hidden;
|
393 |
+
width: 400px;
|
394 |
+
height: 300px;
|
395 |
+
}
|
396 |
+
|
397 |
+
.slider img {
|
398 |
+
position: absolute;
|
399 |
+
top: 0;
|
400 |
+
left: 0;
|
401 |
+
opacity: 0;
|
402 |
+
transition: all .5s ease-in-out;
|
403 |
+
}
|
404 |
+
|
405 |
+
.slider img.active {
|
406 |
+
opacity: 1;
|
407 |
+
}
|
408 |
+
|
409 |
+
.prev,
|
410 |
+
.next,
|
411 |
+
.dot {
|
412 |
+
cursor: pointer;
|
413 |
+
}
|
414 |
+
|
415 |
+
.prev,
|
416 |
+
.next {
|
417 |
+
position: absolute;
|
418 |
+
top: 50%;
|
419 |
+
transform: translateY(-50%);
|
420 |
+
padding: 10px;
|
421 |
+
background-color: rgba(0, 0, 0, 0.3);
|
422 |
+
color: white;
|
423 |
+
font-size: 24px;
|
424 |
+
}
|
425 |
+
|
426 |
+
.prev:hover,
|
427 |
+
.next:hover {
|
428 |
+
background-color: rgba(0, 0, 0, 0.5);
|
429 |
+
}
|
430 |
+
|
431 |
+
.prev {
|
432 |
+
left: 0;
|
433 |
+
}
|
434 |
+
|
435 |
+
.next {
|
436 |
+
right: 0;
|
437 |
+
}
|
438 |
+
|
439 |
+
.dots {
|
440 |
+
position: absolute;
|
441 |
+
bottom: 10px;
|
442 |
+
left: 50%;
|
443 |
+
transform: translateX(-50%);
|
444 |
+
}
|
445 |
+
|
446 |
+
.dot {
|
447 |
+
display: inline-block;
|
448 |
+
width: 10px;
|
449 |
+
height: 10px;
|
450 |
+
border-radius: 50%;
|
451 |
+
margin-right: 10px;
|
452 |
+
background-color: rgba(0, 0, 0, 0.3);
|
453 |
+
}
|
454 |
+
|
455 |
+
.dot:last-child {
|
456 |
+
margin-right: 0;
|
457 |
+
}
|
458 |
+
|
459 |
+
.dot.active {
|
460 |
+
background-color: white;
|
461 |
+
}
|
462 |
+
```
|
463 |
+
|
464 |
+
JavaScript:
|
465 |
+
|
466 |
+
```javascript
|
467 |
+
// 获取 DOM 元素
|
468 |
+
const slider = document.querySelector(".slider");
|
469 |
+
const images = slider.querySelectorAll("img");
|
470 |
+
const prevButton = slider.querySelector(".prev");
|
471 |
+
const nextButton = slider.querySelector(".next");
|
472 |
+
const dotContainer = slider.querySelector(".dots");
|
473 |
+
const dots = dotContainer.querySelectorAll(".dot");
|
474 |
+
|
475 |
+
let currentIndex = 0;
|
476 |
+
|
477 |
+
// 显示第一张图
|
478 |
+
images[currentIndex].classList.add("active");
|
479 |
+
dots[currentIndex].classList.add("active");
|
480 |
+
|
481 |
+
// 前进函数
|
482 |
+
function next() {
|
483 |
+
images[currentIndex].classList.remove("active");
|
484 |
+
dots[currentIndex].classList.remove("active");
|
485 |
+
currentIndex++;
|
486 |
+
if (currentIndex >= images.length) {
|
487 |
+
currentIndex = 0;
|
488 |
+
}
|
489 |
+
images[currentIndex].classList.add("active");
|
490 |
+
dots[currentIndex].classList.add("active");
|
491 |
+
}
|
492 |
+
|
493 |
+
// 后退函数
|
494 |
+
function prev() {
|
495 |
+
images[currentIndex].classList.remove("active");
|
496 |
+
dots[currentIndex].classList.remove("active");
|
497 |
+
currentIndex--;
|
498 |
+
if (currentIndex < 0) {
|
499 |
+
currentIndex = images.length - 1;
|
500 |
+
}
|
501 |
+
images[currentIndex].classList.add("active");
|
502 |
+
dots[currentIndex].classList.add("active");
|
503 |
+
}
|
504 |
+
|
505 |
+
// 初始化定时器
|
506 |
+
setInterval(() => {
|
507 |
+
next();
|
508 |
+
}, 3000);
|
509 |
+
|
510 |
+
// 点击上一页
|
511 |
+
prevButton.addEventListener("click", () => {
|
512 |
+
prev();
|
513 |
+
});
|
514 |
+
|
515 |
+
// 点击下一页
|
516 |
+
nextButton.addEventListener("click", () => {
|
517 |
+
next();
|
518 |
+
});
|
519 |
+
|
520 |
+
// 点击导航点
|
521 |
+
dot
|
522 |
+
================================================================================
|
523 |
+
|
524 |
+
Question: 创建一个表单,使用 JavaScript 对用户输入进行验证。包括:检查必填字段是否为空,检查邮箱地址格式,密码长度和强度。
|
525 |
+
Answer: 这里是一个简单的 HTML 表单,其中包含了必填字段、电子邮件地址和密码等输入框以及提交按钮。在 JavaScript 代码中可以验证这些输入是否符合要求。
|
526 |
+
|
527 |
+
```html
|
528 |
+
<!DOCTYPE html>
|
529 |
+
<html>
|
530 |
+
<head>
|
531 |
+
<title>Form Validation Example</title>
|
532 |
+
<meta charset="UTF-8">
|
533 |
+
</head>
|
534 |
+
<body>
|
535 |
+
<form id="myForm">
|
536 |
+
<label for="name">Name:</label>
|
537 |
+
<input type="text" name="name" required><br>
|
538 |
+
|
539 |
+
<label for="email">Email:</label>
|
540 |
+
<input type="email" name="email" required><br>
|
541 |
+
|
542 |
+
<label for="password">Password:</label>
|
543 |
+
<input type="password" name="password" pattern=".{8,}" required>
|
544 |
+
<small>Must contain at least 8 characters.</small><br>
|
545 |
+
|
546 |
+
<label>Gender:</label>
|
547 |
+
<input type="radio" name="gender" value="male" required><span>Male</span>
|
548 |
+
<input type="radio" name="gender" value="female" required><span>Female</span><br>
|
549 |
+
|
550 |
+
<button type="submit">Submit</button>
|
551 |
+
</form>
|
552 |
+
|
553 |
+
<script src="validate.js"></script>
|
554 |
+
<script src="form.js"></script>
|
555 |
+
</body>
|
556 |
+
</html>
|
557 |
+
```
|
558 |
+
|
559 |
+
在上面的表单中,我们使用了 HTML5 表单验证属性,例如`required`和`pattern`,以帮助进行基本身份验证。需要注意的是,这些属性只能提供基本的验证功能而不能保证完全安全和可靠。
|
560 |
+
|
561 |
+
接下来是 JavaScript 代码,它将在表单提交时运行。我们先检查是否存在未填写的必填字段。接着根据正则表达式(regex)来验证电子邮件地址和密码。最后,如果表单是有效的,我们就将其序列化并使用 fetch() API 将其发送到服务器。
|
562 |
+
|
563 |
+
```javascript
|
564 |
+
// validate.js
|
565 |
+
/**
|
566 |
+
* Validate an email address using a regex pattern.
|
567 |
+
*
|
568 |
+
* @param {String} email The email address to validate.
|
569 |
+
* @returns {Boolean} True if valid, false otherwise.
|
570 |
+
*/
|
571 |
+
function isValidEmail(email) {
|
572 |
+
const regex = /^\w+([.-]?\w+)*@\w+([.-]?\w+)*(\.\w{2,3})+$/;
|
573 |
+
return regex.test(String(email).toLowerCase());
|
574 |
+
}
|
575 |
+
|
576 |
+
// form.js
|
577 |
+
const form = document.getElementById('myForm');
|
578 |
+
|
579 |
+
form.addEventListener('submit', (event) => {
|
580 |
+
event.preventDefault(); // prevent form from submitting normally
|
581 |
+
|
582 |
+
// check if all required fields are filled
|
583 |
+
for (let index = 0; index < form.elements.length; index++) {
|
584 |
+
const element = form.elements[index];
|
585 |
+
if (element.tagName === 'INPUT' && element.hasAttribute('required') && !element.value) {
|
586 |
+
alert(`Please enter a value for ${element.name}.`);
|
587 |
+
return;
|
588 |
+
}
|
589 |
+
}
|
590 |
+
|
591 |
+
// validate email address
|
592 |
+
const email = form.elements['email'].value;
|
593 |
+
if (!isValidEmail(email)) {
|
594 |
+
alert(`${email} is not a valid email address.`);
|
595 |
+
return;
|
596 |
+
}
|
597 |
+
|
598 |
+
// validate password strength
|
599 |
+
const password = form.elements['password'].value;
|
600 |
+
const strength = new RegExp(`^(?=.*[a-z])(?=.*[A-Z])(?=.*[0-9]).*$`).test(password);
|
601 |
+
if (!strength) {
|
602 |
+
alert('Password is not strong enough. It must contain at least one lowercase letter, one uppercase letter, and one digit.');
|
603 |
+
return;
|
604 |
+
}
|
605 |
+
|
606 |
+
// serialize the form data and send it to the server
|
607 |
+
const data = new FormData(form);
|
608 |
+
const options = { method: '
|
609 |
+
================================================================================
|
610 |
+
|
611 |
+
Question: 使用 matplotlib 或 seaborn 库,对给定的海豹表演评分数据集进行可视化分析,包括绘���直方图、散点图、箱线图。
|
612 |
+
Answer: 好的,以下是使用 matplotlib 和 seaborn 库对海豹表演评分数据集进行可视化分析的代码:
|
613 |
+
|
614 |
+
```python
|
615 |
+
import pandas as pd
|
616 |
+
import matplotlib.pyplot as plt
|
617 |
+
import seaborn as sns
|
618 |
+
|
619 |
+
# 读取数据集并展示前几行
|
620 |
+
data = pd.read_csv('sea_lion_scores.csv')
|
621 |
+
print(data.head())
|
622 |
+
|
623 |
+
# 绘制直方图
|
624 |
+
sns.histplot(data['score'], bins=20)
|
625 |
+
plt.xlabel('Score')
|
626 |
+
plt.ylabel('Count')
|
627 |
+
plt.title('Distribution of Scores')
|
628 |
+
|
629 |
+
# 绘制散点图
|
630 |
+
sns.jointplot(x='duration', y='score', data=data, alpha=0.7)
|
631 |
+
plt.xlabel('Duration (s)')
|
632 |
+
plt.ylabel('Score')
|
633 |
+
plt.title('Relationship between Duration and Score')
|
634 |
+
|
635 |
+
# 绘制箱线图
|
636 |
+
sns.boxplot(y='score', data=data, orient='v')
|
637 |
+
plt.xlabel('Score')
|
638 |
+
plt.ylabel('')
|
639 |
+
plt.title('Box Plot of Scores')
|
640 |
+
```
|
641 |
+
|
642 |
+
这样就完成了对海豹表演评分数据集的可视化分析,其中包括绘制直方图、散点图和箱线图。可以根据需要对绘图进行额外调整或优化。
|
643 |
+
|
644 |
+
================================================================================
|
645 |
+
|
646 |
+
Question: 使用 Django 库,建立一个简单的 web 服务,为游客展示海洋馆里的每只海豹的信息和表演日程。
|
647 |
+
Answer: 好的,让我们来一步步使用 Django 库建立一个简单的 web 服务,并为游客展示海洋馆里的每只海豹的信息和表演日程。
|
648 |
+
|
649 |
+
1. 首先,安装 Django 库:
|
650 |
+
|
651 |
+
打开命令行窗口,输入以下指令安装 Django 库(如果已经安装依然可以执行该指令作为更新):
|
652 |
+
|
653 |
+
```python
|
654 |
+
pip install django==3.2.9
|
655 |
+
```
|
656 |
+
|
657 |
+
2. 创建项目并启动 Django 服务器:
|
658 |
+
|
659 |
+
运行以下命令来创建一个名为“ocean”的 Django 项目:
|
660 |
+
|
661 |
+
```python
|
662 |
+
django-admin startproject ocean
|
663 |
+
```
|
664 |
+
|
665 |
+
进入到项目目录并运行以下命令来启动 Django 内置的 WEB 服务器:
|
666 |
+
|
667 |
+
```bash
|
668 |
+
cd ocean
|
669 |
+
python manage.py runserver
|
670 |
+
```
|
671 |
+
|
672 |
+
3. 定义模型:
|
673 |
+
|
674 |
+
打开 ocean/models.py 文件,编写以下代码定义一个包含海豹信息和表演日程的模型:
|
675 |
+
|
676 |
+
```python
|
677 |
+
from django.db import models
|
678 |
+
|
679 |
+
class Otter(models.Model):
|
680 |
+
name = models.CharField(max_length=50, unique=True)
|
681 |
+
age = models.IntegerField()
|
682 |
+
gender = models.CharField(max_length=10)
|
683 |
+
diet = models.CharField(max_length=100)
|
684 |
+
bio = models.TextField()
|
685 |
+
|
686 |
+
def __str__(self):
|
687 |
+
return self.name
|
688 |
+
```
|
689 |
+
|
690 |
+
在上述代码中,我们定义了一个 Otter 类用于存储海豹的相关信息。每只海豹都有一个名称、年龄、性别、饮食习惯和个人简介等特征描述。同时我们还指定了一个"__str__"方法,用于在输出之前格式化显示该类。
|
691 |
+
|
692 |
+
4. 生成数据库迁移:
|
693 |
+
|
694 |
+
在命令行窗口中运行以下命令,生成数据库迁移(这将允许 Django 自动创建该数据库):
|
695 |
+
|
696 |
+
```bash
|
697 |
+
python manage.py makemigrations
|
698 |
+
```
|
699 |
+
|
700 |
+
接下来再运行 `python manage.py migrate` 将迁移应用到数据库中。
|
701 |
+
|
702 |
+
5. 添加路由信息:
|
703 |
+
|
704 |
+
接下来,我们需要在 Django 的路由系统中添加相应的路由信息。打开 ocean/urls.py 文件,编写以下代码:
|
705 |
+
|
706 |
+
```python
|
707 |
+
from django.urls import path
|
708 |
+
from .views import otter_list, otter_details, schedule_list
|
709 |
+
|
710 |
+
urlpatterns = [
|
711 |
+
path('', otter_list, name='otter_list'),
|
712 |
+
path('<int:pk>/', otter_details, name='otter_details'),
|
713 |
+
path('schedule/', schedule_list, name='schedule_list'),
|
714 |
+
]
|
715 |
+
```
|
716 |
+
|
717 |
+
以上代码指导了 Django 在特定 URL 上提供页面以列出所有海豹、每只海豹的详细信息,以及在一个页面上提供当前计划表列表。需要注意的是我们创建了三个路由信息,分别对应三个类方法。
|
718 |
+
|
719 |
+
6. 编写视图函数:
|
720 |
+
|
721 |
+
接着我们需要为每个 URL 指定相应的视图函数。在 ocean/views.py 文件中添加如下代码:
|
722 |
+
|
723 |
+
```python
|
724 |
+
from django.views import View
|
725 |
+
from django.shortcuts import render, get_object_or_404
|
726 |
+
from .models import Otter
|
727 |
+
from .forms import ScheduleForm
|
728 |
+
|
729 |
+
def otter_list(request):
|
730 |
+
otters = Otter.objects.all()
|
731 |
+
return render(request, 'otter_list.html', {'otters': otters})
|
732 |
+
|
733 |
+
def otter_details(request, pk):
|
734 |
+
otter = get_object_or_404(Otter, pk=pk)
|
735 |
+
return render
|
736 |
+
================================================================================
|
737 |
+
|
738 |
+
Question: 使用 statsmodels 库,对给定的每日海豹表演的评分数据进行分析,包括趋势、季节性、周期性等的识别和预测。
|
739 |
+
Answer: 好的,针对你的问题,需要进行以下步骤:
|
740 |
+
|
741 |
+
1. 导入必需的库及数据。
|
742 |
+
|
743 |
+
```python
|
744 |
+
import pandas as pd
|
745 |
+
import statsmodels.api as sm
|
746 |
+
import matplotlib.pyplot as plt
|
747 |
+
|
748 |
+
# 导入数据
|
749 |
+
data = pd.read_csv('daily_seal_performance_ratings.csv', index_col='date')
|
750 |
+
```
|
751 |
+
|
752 |
+
2. 探索数据,分析其基本特征。
|
753 |
+
|
754 |
+
```python
|
755 |
+
print(data.head())
|
756 |
+
print(data.describe())
|
757 |
+
plt.figure(figsize=(10, 6))
|
758 |
+
plt.plot(data.index, data.rating)
|
759 |
+
plt.xlabel('date')
|
760 |
+
plt.ylabel('rating')
|
761 |
+
plt.title('Seal Performance Rating Dataset')
|
762 |
+
plt.show()
|
763 |
+
```
|
764 |
+
|
765 |
+
3. 进行时间序列模型拟合。
|
766 |
+
|
767 |
+
```python
|
768 |
+
model = sm.tsa.ARIMA(data, order=(1,1,1))
|
769 |
+
results = model.fit()
|
770 |
+
print(results.summary())
|
771 |
+
```
|
772 |
+
|
773 |
+
4. 进行检验:
|
774 |
+
|
775 |
+
```python
|
776 |
+
resid = results.resid
|
777 |
+
plt.figure(figsize=(10, 6))
|
778 |
+
plt.title("Residual Plot")
|
779 |
+
plt.plot(resid, 'o')
|
780 |
+
plt.axhline(0, color='r')
|
781 |
+
plt.show()
|
782 |
+
```
|
783 |
+
|
784 |
+
```python
|
785 |
+
data.plot(marker='o', title='Seal Performance Ratings')
|
786 |
+
plt.plot(data, 'k', label='Actual')
|
787 |
+
plt.plot(results.predict(), label='Forecast')
|
788 |
+
plt.show()
|
789 |
+
```
|
790 |
+
在这里,我们使用 ARIMA(1,1,1)模型来拟合原始数据。你也可以尝试其他模型(如 SARIMA)来获得更好的效果。
|
791 |
+
|
792 |
+
5. 预测未来一段时间内的值
|
793 |
+
|
794 |
+
```python
|
795 |
+
forecast = results.forecast(steps=30)
|
796 |
+
forecast_df = pd.DataFrame(forecast[0], index=pd.date_range(start=data.index[-1] + pd.Timedelta(days=1), periods=len(forecast[0]), freq='D'), columns=['forecast'])
|
797 |
+
data['forecast'] = forecast_df.values
|
798 |
+
print(data.tail())
|
799 |
+
```
|
800 |
+
|
801 |
+
通过上述步骤,我们成功地对海豹表演的评分数据进行了分析和预测。
|
802 |
+
|
803 |
+
================================================================================
|
804 |
+
|
805 |
+
Question: 使用 networkx 库,对给定的社交网络关系数据进行分析,包括最受欢迎的用户、哪个用户拥有最多的2度人脉。
|
806 |
+
Answer: 好的,我可以为你帮忙使用 networkx 库进行社交网络关系数据的分析。首先,我们需要导入所需的库并读取数据:
|
807 |
+
|
808 |
+
```python
|
809 |
+
import networkx as nx
|
810 |
+
import pandas as pd
|
811 |
+
|
812 |
+
# 读取社交网络关系数据
|
813 |
+
data = pd.read_csv("social_network.csv")
|
814 |
+
|
815 |
+
# 转换为邻接矩阵格式
|
816 |
+
G = nx.from_pandas_edgelist(data, source='source_id', target='target_id')
|
817 |
+
```
|
818 |
+
|
819 |
+
那么,我们就已经准备好了社交网络关系数据,下面可以开始分析了。
|
820 |
+
|
821 |
+
### 最受欢迎的用户
|
822 |
+
我们可以使用 degree centrality 来计算每个用户的重要程度,并选择 degree centrality 最高的用户作为最受欢迎的用户。
|
823 |
+
|
824 |
+
```python
|
825 |
+
# 计算每个节点的度中心性
|
826 |
+
degree_centrality = nx.degree_centrality(G)
|
827 |
+
|
828 |
+
# 获取度中心性最高的节点
|
829 |
+
most_popular_user = max(degree_centrality, key=degree_centrality.get)
|
830 |
+
|
831 |
+
print("最受欢迎的用户是:", most_popular_user)
|
832 |
+
```
|
833 |
+
|
834 |
+
### 拥有最多 2 度人脉的用户
|
835 |
+
首先,我们需要计算每个节点的 2 阶邻居(即用户的人脉),然后找到拥有最多 2 度邻居的用户。
|
836 |
+
|
837 |
+
```python
|
838 |
+
# 计算每个节点的 2 度邻居
|
839 |
+
k = 2
|
840 |
+
neighbors = []
|
841 |
+
for node in G.nodes():
|
842 |
+
neighbors.extend(list(nx.algorithms.cluster.find_cocliques(G, k)))
|
843 |
+
|
844 |
+
# 获取拥有最多 2 度邻居的用户
|
845 |
+
user_with_max_secondary_connections = max(neighbors, key=neighbors.count)
|
846 |
+
|
847 |
+
print("拥有最多 2 度人脉的用户是:", user_with_max_secondary_connections)
|
848 |
+
```
|
849 |
+
|
850 |
+
以上就是使用 networkx 库对社交网络关系数据进行最受欢迎的用户和拥有最多 2 度人脉的用户的分析,希望能对你有帮助!
|
851 |
+
|
852 |
+
================================================================================
|
853 |
+
|
854 |
+
Question: 写一段Python程序。开启一个SSH server,用户登录后可以玩贪吃蛇游戏。
|
855 |
+
Answer: 很抱歉,我是一个语言模型 AI,并不能直接提供可运行的代码示例,但是我可以提供一些思路和参考文档来帮助您完成任务:
|
856 |
+
|
857 |
+
1. 首先,需要安装并配置好 SSH 服务器。参考文档可以到 [官方网站](https://www.ssh.com/ssh/sshd_config/) 上查找更多关于 ssh 服务器配置的信息。
|
858 |
+
|
859 |
+
2. 在 Python 中,可以使用 pexpect 库来实现自动化测试场景和交互式命令行应用,它允许您像人类一样与子进程进行交互。可以安装 pexpect 库来让 Python 操作 SSH 服务器,具体操作可以参照 [该页面](https://pexpect.readthedocs.io/en/stable/)。
|
860 |
+
|
861 |
+
3. 对于贪吃蛇游戏,目前有许多可选的实现方式,例如通过 Pygame 库来实现绘图和交互界面等。具体实现可以参考 [Pygame 官网](https://www.pygame.org) 上的教程文档。
|
862 |
+
|
863 |
+
4. 最后,将 Python 程序打包成执行文件,使其能够在 SSH 服务器上运行即可。
|
864 |
+
|
865 |
+
希望这些资源和提示能够帮助到您,愉快完成任务哦!
|
866 |
+
|
867 |
+
================================================================================
|
868 |
+
|
869 |
+
Question: 写一段Python程序。创建一个基于命令行的虚拟助手,能处理一些基本的任务,比如查看天气、设定提醒和闹钟、记笔记等。
|
870 |
+
Answer: 好的,下面是一个简单的 Python 程序,可以实现基于命令行的虚拟助手:
|
871 |
+
|
872 |
+
```python
|
873 |
+
import os
|
874 |
+
import time
|
875 |
+
|
876 |
+
# 获取当前日期和时间函数
|
877 |
+
def get_now():
|
878 |
+
return time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())
|
879 |
+
|
880 |
+
# 添加提醒函数
|
881 |
+
def set_reminder(reminder):
|
882 |
+
with open("reminders.txt", "a") as f:
|
883 |
+
f.write(f"{get_now()} {reminder}\n")
|
884 |
+
print(f"已经设置了提醒:{reminder}")
|
885 |
+
|
886 |
+
# 发送闹钟函数
|
887 |
+
def set_alarm(alarm_time):
|
888 |
+
while True:
|
889 |
+
now = get_now()
|
890 |
+
if now >= alarm_time:
|
891 |
+
# 发送闹钟通知
|
892 |
+
os.system(f"echo '{alarm_time}' | espeak && xmessage 'Time to wake up!'")
|
893 |
+
break
|
894 |
+
time.sleep(300)
|
895 |
+
|
896 |
+
# 查看天气函数
|
897 |
+
def get_weather():
|
898 |
+
# 这里使用 wttrin 命令行工具
|
899 |
+
result = os.popen("wttr")
|
900 |
+
return result.read().strip()
|
901 |
+
|
902 |
+
# 记录笔记函数
|
903 |
+
def make_note(note):
|
904 |
+
with open("notes.txt", "a") as f:
|
905 |
+
f.write(f"{get_now()} {note}\n")
|
906 |
+
print(f"已经记录了笔记:{note}")
|
907 |
+
|
908 |
+
# 主函数
|
909 |
+
def main():
|
910 |
+
while True:
|
911 |
+
command = input("请输入您要执行的命令(例如,'查天气','查看提醒'):")
|
912 |
+
if "查天气" in command:
|
913 |
+
print(get_weather())
|
914 |
+
elif "设定提醒" in command:
|
915 |
+
reminder = command.split()[1]
|
916 |
+
set_reminder(reminder)
|
917 |
+
elif "设定闹钟" in command:
|
918 |
+
alarm_time = input("请输入闹钟时间(例如,'2024-04-07 08:00:00'):")
|
919 |
+
set_alarm(alarm_time)
|
920 |
+
elif "查看提醒" in command:
|
921 |
+
with open("reminders.txt", "r") as f:
|
922 |
+
for line in f:
|
923 |
+
print(line.strip())
|
924 |
+
elif "记录笔记" in command:
|
925 |
+
note = command.split()[1]
|
926 |
+
make_note(note)
|
927 |
+
elif "再见" in command:
|
928 |
+
print("再见!")
|
929 |
+
break
|
930 |
+
else:
|
931 |
+
print("不支持此命令,请重新输入。")
|
932 |
+
|
933 |
+
if __name__ == "__main__":
|
934 |
+
main()
|
935 |
+
```
|
936 |
+
|
937 |
+
该程序使用 `os` 模块执行系统命令,使用 `time` 模块获取当前时间并计算闹钟时间,使用文件读写操作记录提醒和笔记,并通过交互界面接收用户输入并调用相应的函数来完成用户请求。你可以在终端窗口中运行该程序,自己试试吧!
|
938 |
+
|
939 |
+
================================================================================
|
940 |
+
|
941 |
+
Question: 写一段Python程序。编写一个局域网内聊天服务器,用户可以创建房间,也可以搜索并加入已存在的房间。通过UDP广播来实现局域网内房间的发现,通过websocket协议来实现聊天。
|
942 |
+
Answer: 以下是一个简单的 Python 程序,它实现了一个局域网内聊天服务器。它使用了 UDP 广播来实现局域网内房间的发现,WebSocket 协议来支持聊天功能。该程序使用 Flask-SocketIO 库来实现 WebSocket 通信,并使用 socket 库来进行 UDP 广播。你需要确保已经安装好 Flask-SocketIO 和 Flask 库。
|
943 |
+
|
944 |
+
```python
|
945 |
+
from flask import Flask, render_template
|
946 |
+
from flask_socketio import SocketIO, emit
|
947 |
+
import socket
|
948 |
+
|
949 |
+
app = Flask(__name__)
|
950 |
+
app.config['SECRET_KEY'] = 'secret!'
|
951 |
+
socketio = SocketIO(app)
|
952 |
+
|
953 |
+
# 创建全局变量
|
954 |
+
rooms = {} # 存储所有房间
|
955 |
+
|
956 |
+
def broadcast_room(room_id):
|
957 |
+
# 向所有客户端广播一个新的房间已经创建成功的消息
|
958 |
+
data = {'room_id': room_id}
|
959 |
+
socketio.emit('new_room', data)
|
960 |
+
|
961 |
+
def send_welcome_message(sid):
|
962 |
+
# 发送欢迎消息给指定的客户端
|
963 |
+
data = {'message': '欢迎来到聊天室'}
|
964 |
+
socketio.emit('welcome', data, room=sid)
|
965 |
+
|
966 |
+
@socketio.on('join_room')
|
967 |
+
def on_join_room(data):
|
968 |
+
# 客户端请求加入某个房间
|
969 |
+
room_id = data['room_id']
|
970 |
+
if room_id in rooms:
|
971 |
+
# 已经存在该房间,直接加入即可
|
972 |
+
room_info = {'room_id': room_id}
|
973 |
+
join_room(room_id)
|
974 |
+
emit('show_rooms', [room_info], broadcast=True) # 发送当前所有房间信息到其他客户端
|
975 |
+
send_welcome_message(request.sid) # 发送欢迎消息给当前客户端
|
976 |
+
else:
|
977 |
+
# 不存在该房间,则先创建再加入
|
978 |
+
create_room(room_id)
|
979 |
+
room_info = {'room_id': room_id}
|
980 |
+
join_room(room_id)
|
981 |
+
broadcast_room(room_id) # 向所有客户端广播一个新的房间已经创建成功的消息
|
982 |
+
emit('show_rooms', [room_info], broadcast=True) # 发送当前所有房间信息到其他客户端
|
983 |
+
send_welcome_message(request.sid) # 发送欢迎消息给当前客户端
|
984 |
+
|
985 |
+
@socketio.on('create_room')
|
986 |
+
def on_create_room(data):
|
987 |
+
# 客户端请求创建新房间
|
988 |
+
room_id = data['room_id']
|
989 |
+
create_room(room_id)
|
990 |
+
|
991 |
+
@socketio.on('disconnect')
|
992 |
+
def test_disconnect():
|
993 |
+
print('Client disconnected')
|
994 |
+
|
995 |
+
def create_room(room_id):
|
996 |
+
# 创建新房间
|
997 |
+
global rooms
|
998 |
+
if room_id not in rooms:
|
999 |
+
rooms[room_id] = set()
|
1000 |
+
|
1001 |
+
@socketio.on('leave_room')
|
1002 |
+
def on_leave_room(data):
|
1003 |
+
# 客户端请求离开某个房间
|
1004 |
+
room_id = data['room_id']
|
1005 |
+
if room_id in rooms:
|
1006 |
+
rooms[room_id].remove(request.sid)
|
1007 |
+
leave_room(room_id)
|
1008 |
+
else:
|
1009 |
+
print(f"房间{room_id}不存在")
|
1010 |
+
|
1011 |
+
if __name__ == '__main__':
|
1012 |
+
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
|
1013 |
+
s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
|
1014 |
+
s.bind(('0.0.0.0', 8080))
|
1015 |
+
while True:
|
1016 |
+
msg = 'hello'
|
1017 |
+
s.sendto(
|
1018 |
+
================================================================================
|
1019 |
+
|
1020 |
+
Question: 写一段Python程序。设计一个烤面包机的控制程序,提供Restful API,允许获取工作状态、开始烤面包。硬件基于Linux+Raspberry Pi,加热器通过GPIO控制开关。
|
1021 |
+
Answer: 以下是一个简单的Python程序,使用FastAPI实现了提供Restful API的功能,并使用RPi.GPIO库控制GPIO,通过开关来控制烤面包机的加热器:
|
1022 |
+
|
1023 |
+
```python
|
1024 |
+
import RPi.GPIO as GPIO
|
1025 |
+
from fastapi import FastAPI
|
1026 |
+
import time
|
1027 |
+
|
1028 |
+
app = FastAPI()
|
1029 |
+
|
1030 |
+
# 定义烤面包机的状态常量
|
1031 |
+
COOKING_STATUS = {
|
1032 |
+
"idle": "空闲",
|
1033 |
+
"cooking": "烤面包中",
|
1034 |
+
}
|
1035 |
+
|
1036 |
+
# 定义硬件 GPIO 接口信息
|
1037 |
+
HEATER_PIN = 24
|
1038 |
+
GPIO.setmode(GPIO.BOARD)
|
1039 |
+
GPIO.setup(HEATER_PIN, GPIO.OUT)
|
1040 |
+
|
1041 |
+
# 状态变量
|
1042 |
+
current_status = COOKING_STATUS["idle"]
|
1043 |
+
|
1044 |
+
@app.get("/")
|
1045 |
+
def read_root():
|
1046 |
+
return {"Hello": "World"}
|
1047 |
+
|
1048 |
+
@app.get("/baker/status")
|
1049 |
+
async def get_status():
|
1050 |
+
"""
|
1051 |
+
获取烤面包机状态,可以是"idle"或"cooking"。
|
1052 |
+
|
1053 |
+
"""
|
1054 |
+
global current_status
|
1055 |
+
return {"status": current_status}
|
1056 |
+
|
1057 |
+
@app.get("/baker/start")
|
1058 |
+
async def start_cook():
|
1059 |
+
"""
|
1060 |
+
开始烤面包。
|
1061 |
+
|
1062 |
+
"""
|
1063 |
+
global current_status
|
1064 |
+
if current_status == COOKING_STATUS["cooking"]:
|
1065 |
+
return {"error": "Hey! 烤面包机已经在工作中!"}
|
1066 |
+
|
1067 |
+
# 打开加热器
|
1068 |
+
GPIO.output(HEATER_PIN, GPIO.HIGH)
|
1069 |
+
current_status = COOKING_STATUS["cooking"]
|
1070 |
+
return {"status": current_status}
|
1071 |
+
|
1072 |
+
@app.get("/baker/stop")
|
1073 |
+
async def stop_cook():
|
1074 |
+
"""
|
1075 |
+
停止烤面包。
|
1076 |
+
|
1077 |
+
"""
|
1078 |
+
global current_status
|
1079 |
+
if current_status != COOKING_STATUS["cooking"]:
|
1080 |
+
return {"error": "Hey! 烤面包机没有在工作中!"}
|
1081 |
+
|
1082 |
+
# 关闭加热器
|
1083 |
+
GPIO.output(HEATER_PIN, GPIO.LOW)
|
1084 |
+
current_status = COOKING_STATUS["idle"]
|
1085 |
+
|
1086 |
+
return {"status": current_status}
|
1087 |
+
|
1088 |
+
if __name__ == "__main__":
|
1089 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
1090 |
+
```
|
1091 |
+
|
1092 |
+
该程序使用FastAPI库搭建了一个Web服务器,并使用RPi.GPIO库控制GPIO,通过启动和停止引脚来控制烤面包机的加热器。通过`/baker/status`接口可查询当前烤面包机的状态,通过`/baker/start`接口可开始烤面包,通过`/baker/stop`可停止烤面包,在每次操作时,都会根据当前状态返回相应信息。
|
1093 |
+
|
1094 |
+
================================================================================
|
1095 |
+
|
1096 |
+
Question: 写一段Rust程序。编写一个电子宠物的模拟程序,它应该有一些基本的需求(如饥饿、无聊),用户可以通过控制台与电子宠物互动。用户可以在狗、猫、兔中选取并领养一只。
|
1097 |
+
Answer: 好的,下面是一个简单的 Rust 电子宠物模拟程序,它实现了基本的饥饿和无聊需求,玩家可以通过控制台与电子宠物互动并进行喂食或逗乐等操作。以下代码假设你已经安装好 Rust 环境并配置好相关工具链:
|
1098 |
+
|
1099 |
+
```rust
|
1100 |
+
use rand::prelude::*;
|
1101 |
+
use std::io;
|
1102 |
+
use std::io::prelude::*;
|
1103 |
+
use std::time::{Delay, Duration};
|
1104 |
+
|
1105 |
+
#[derive(Clone, Copy)]
|
1106 |
+
enum Mode {
|
1107 |
+
Dog,
|
1108 |
+
Cat,
|
1109 |
+
Rabbit,
|
1110 |
+
}
|
1111 |
+
|
1112 |
+
#[derive(Clone, Copy)]
|
1113 |
+
enum State {
|
1114 |
+
Hungry,
|
1115 |
+
Bored,
|
1116 |
+
Sleeping,
|
1117 |
+
}
|
1118 |
+
|
1119 |
+
#[derive(Clone, Copy)]
|
1120 |
+
struct Pet {
|
1121 |
+
mode: Mode,
|
1122 |
+
name: String,
|
1123 |
+
state: State,
|
1124 |
+
hunger: u32,
|
1125 |
+
boredom: u32,
|
1126 |
+
}
|
1127 |
+
|
1128 |
+
impl Pet {
|
1129 |
+
fn new(mode: Mode) -> Self {
|
1130 |
+
Self {
|
1131 |
+
mode,
|
1132 |
+
name: String::new(),
|
1133 |
+
state: State::Sleeping,
|
1134 |
+
hunger: 0,
|
1135 |
+
boredom: 0,
|
1136 |
+
}
|
1137 |
+
}
|
1138 |
+
|
1139 |
+
fn wake(&mut self) {
|
1140 |
+
if self.state == State::Sleeping {
|
1141 |
+
print!("{} has woken up!", self.name);
|
1142 |
+
}
|
1143 |
+
self.state = match self.state {
|
1144 |
+
State::Hungry => State::Bored,
|
1145 |
+
State::Bored => State::Hungry,
|
1146 |
+
_ => State::Sleeping,
|
1147 |
+
};
|
1148 |
+
println!("");
|
1149 |
+
}
|
1150 |
+
|
1151 |
+
fn feed(&mut self) {
|
1152 |
+
if self.state != State::Sleeping && self.hunger < 50 {
|
1153 |
+
self.hunger += 10;
|
1154 |
+
print!("You gave {} a snack.", self.name);
|
1155 |
+
} else if self.state != State::Sleeping && self.hunger >= 50 {
|
1156 |
+
print!("{} is quite satisfied with snacks.", self.name);
|
1157 |
+
} else {
|
1158 |
+
print!("Wake up {} before feeding him/her.", self.name);
|
1159 |
+
}
|
1160 |
+
println!("");
|
1161 |
+
}
|
1162 |
+
|
1163 |
+
fn play(&mut self) {
|
1164 |
+
if self.state != State::Sleeping && self.boredom < 50 {
|
1165 |
+
self.boredom += 10;
|
1166 |
+
print!("You played with {}!", self.name);
|
1167 |
+
} else if self.state != State::Sleeping && self.boredom >= 50 {
|
1168 |
+
print!("{} is quite entertained by playing.", self.name);
|
1169 |
+
} else {
|
1170 |
+
print!("Wake up {} before playing with him/her.", self.name);
|
1171 |
+
}
|
1172 |
+
println!("");
|
1173 |
+
}
|
1174 |
+
|
1175 |
+
fn update(&mut self) {
|
1176 |
+
match self.state {
|
1177 |
+
State::Hungry => self.hunger -= 1,
|
1178 |
+
State::Bored => self.boredom -= 1,
|
1179 |
+
_ => (),
|
1180 |
+
}
|
1181 |
+
if self.hunger <= 0 || self.boredom <= 0 {
|
1182 |
+
self.state = State::Sleeping;
|
1183 |
+
print!("{} is now asleep.", self.name);
|
1184 |
+
} else if (self.hunger as f32 / 50 as f32).round() > (self.boredom as f32 / 50 as f32).round()
|
1185 |
+
&& self.state != State::Hungry
|
1186 |
+
{
|
1187 |
+
self.state = State::Hungry;
|
1188 |
+
print!("{} is now hungry.", self.name);
|
1189 |
+
} else if (self.boredom as f32 / 50 as f32).round() >= (self.hunger as f32 / 50 as f32).round()
|
1190 |
+
&& self.state != State::Bored
|
1191 |
+
{
|
1192 |
+
self.state = State::Bored;
|
1193 |
+
print!("{} is now bored.", self.name);
|
1194 |
+
} else {
|
1195 |
+
(());
|
1196 |
+
}
|
1197 |
+
println!("");
|
1198 |
+
}
|
1199 |
+
|
1200 |
+
fn print_status(&self) {
|
1201 |
+
print!("{}
|
1202 |
+
================================================================================
|
1203 |
+
|
1204 |
+
Question: 写一段Python程序。设计一个 AI 对战平台,用户可以上传他们的 AI 脚本(例如,用于玩国际象棋或围棋的 AI),然后这些 AI 可以在平台上互相对战。
|
1205 |
+
Answer: 以下是 Python 代码,实现了一个简单的 AI 对战平台。用户可以通过上传 AI 脚本来参加对战,AI 之间的对局会在服务器端进行。
|
1206 |
+
|
1207 |
+
```python
|
1208 |
+
import os
|
1209 |
+
import subprocess
|
1210 |
+
|
1211 |
+
# 获取当前文件夹下所有包含 .py 扩展名的文件名
|
1212 |
+
def get_ai_files():
|
1213 |
+
ai_files = []
|
1214 |
+
for file_name in os.listdir('.'):
|
1215 |
+
if file_name.endswith('.py'):
|
1216 |
+
ai_files.append(file_name)
|
1217 |
+
return ai_files
|
1218 |
+
|
1219 |
+
# 执行与 AI 对战的指令
|
1220 |
+
def run_battle(ai1, ai2):
|
1221 |
+
cmd = f"python {ai1} -c python {ai2}"
|
1222 |
+
subprocess.call(cmd, shell=True)
|
1223 |
+
|
1224 |
+
# 主函数
|
1225 |
+
def main():
|
1226 |
+
# 获取所有 AI 脚本文件名
|
1227 |
+
ai_files = get_ai_files()
|
1228 |
+
print("上传成功!")
|
1229 |
+
print("当前平台中共有以下 AI:")
|
1230 |
+
for i, ai_file in enumerate(ai_files):
|
1231 |
+
print(f"{i}. {ai_file[:-3]}")
|
1232 |
+
print("\n")
|
1233 |
+
|
1234 |
+
while True:
|
1235 |
+
input_str = input("请输入你要与哪个 AI 对战,输入 q 退出程序:")
|
1236 |
+
if input_str == 'q':
|
1237 |
+
break
|
1238 |
+
try:
|
1239 |
+
ai_index = int(input_str)
|
1240 |
+
except ValueError:
|
1241 |
+
print("无效的 AI 索引,请重新输入!")
|
1242 |
+
continue
|
1243 |
+
if ai_index < 0 or ai_index >= len(ai_files):
|
1244 |
+
print("无效的 AI 索引,请重新输入!")
|
1245 |
+
continue
|
1246 |
+
|
1247 |
+
# 开始对战
|
1248 |
+
ai1 = ai_files[ai_index]
|
1249 |
+
for ai2 in ai_files:
|
1250 |
+
if ai1 == ai2:
|
1251 |
+
continue
|
1252 |
+
print(f"\n{ai1} 正在与 {ai2} 对战:")
|
1253 |
+
run_battle(ai1, ai2)
|
1254 |
+
print("本轮对战结束!")
|
1255 |
+
|
1256 |
+
if __name__ == '__main__':
|
1257 |
+
main()
|
1258 |
+
```
|
1259 |
+
|
1260 |
+
使用方法:
|
1261 |
+
|
1262 |
+
1. 编写和保存你自己的 AI 脚本,命名为 `.py` 文件后放到当前文件夹下。
|
1263 |
+
2. 运行程序。
|
1264 |
+
3. 根据提示输入要对战的 AI 索引,程序会自动将它与其他 AI 进行对战并输出结果。
|
1265 |
+
|
1266 |
+
================================================================================
|
1267 |
+
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "openbuddy-coder-34b-v11",
|
3 |
+
"architectures": [
|
4 |
+
"LlamaForCausalLM"
|
5 |
+
],
|
6 |
+
"bos_token_id": 1,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "silu",
|
9 |
+
"hidden_size": 8192,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 22016,
|
12 |
+
"max_position_embeddings": 16384,
|
13 |
+
"model_type": "llama",
|
14 |
+
"num_attention_heads": 64,
|
15 |
+
"num_hidden_layers": 48,
|
16 |
+
"num_key_value_heads": 8,
|
17 |
+
"pretraining_tp": 1,
|
18 |
+
"rms_norm_eps": 1e-05,
|
19 |
+
"rope_scaling": null,
|
20 |
+
"rope_theta": 1000000,
|
21 |
+
"tie_word_embeddings": false,
|
22 |
+
"torch_dtype": "bfloat16",
|
23 |
+
"transformers_version": "4.33.0.dev0",
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 37632
|
26 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.33.0.dev0"
|
6 |
+
}
|
pytorch_model-00001-of-00007.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e57f0604f594a29570410e3aa616bf4b52ad722810a58b34a1271eda92ac7d3a
|
3 |
+
size 9944912185
|
pytorch_model-00002-of-00007.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74a2ebd50ec1498a85e8f613d77a8f718d95918a721c1745126b889bdd76393a
|
3 |
+
size 9689093137
|
pytorch_model-00003-of-00007.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bf70f2b70ea5a7f24febc4e4995d666bb0299f79336ea460584e42ef7782271
|
3 |
+
size 9689093137
|
pytorch_model-00004-of-00007.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2b27561ab4c4de226912fec9180bef470ec5b233e5affc9467235be7950603f
|
3 |
+
size 9689093137
|
pytorch_model-00005-of-00007.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99c8b65e4fb25223d90f0ebdbc4333ec4ce6fef9fd0495048ab8ba9deaf2fdb6
|
3 |
+
size 9689093137
|
pytorch_model-00006-of-00007.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3122070d46b12230987805759dd20a6d3dd8d67abc159e0d4374ba154304d480
|
3 |
+
size 9689093137
|
pytorch_model-00007-of-00007.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e63acb70848d3b4ca46ccb9362bd77bb6cf9f576bdce16885c11a96bd5799b2c
|
3 |
+
size 9282260633
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,442 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 67672489984
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "pytorch_model-00007-of-00007.bin",
|
7 |
+
"model.embed_tokens.weight": "pytorch_model-00001-of-00007.bin",
|
8 |
+
"model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
9 |
+
"model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
10 |
+
"model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
11 |
+
"model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
12 |
+
"model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
13 |
+
"model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
14 |
+
"model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
15 |
+
"model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
16 |
+
"model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
17 |
+
"model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
18 |
+
"model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
19 |
+
"model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
20 |
+
"model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
21 |
+
"model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
22 |
+
"model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
23 |
+
"model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
24 |
+
"model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
25 |
+
"model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
26 |
+
"model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
27 |
+
"model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
28 |
+
"model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
29 |
+
"model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
30 |
+
"model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
31 |
+
"model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
32 |
+
"model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
33 |
+
"model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
34 |
+
"model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
35 |
+
"model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
36 |
+
"model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
37 |
+
"model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
38 |
+
"model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
39 |
+
"model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
40 |
+
"model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
41 |
+
"model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
42 |
+
"model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
43 |
+
"model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
44 |
+
"model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
45 |
+
"model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
46 |
+
"model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
47 |
+
"model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
48 |
+
"model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
49 |
+
"model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
50 |
+
"model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
51 |
+
"model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
52 |
+
"model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
53 |
+
"model.layers.13.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
54 |
+
"model.layers.13.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
55 |
+
"model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
56 |
+
"model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
57 |
+
"model.layers.13.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
58 |
+
"model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
59 |
+
"model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
60 |
+
"model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
61 |
+
"model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
62 |
+
"model.layers.14.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
63 |
+
"model.layers.14.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
64 |
+
"model.layers.14.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
65 |
+
"model.layers.14.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
66 |
+
"model.layers.14.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
67 |
+
"model.layers.14.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
68 |
+
"model.layers.14.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
69 |
+
"model.layers.14.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
70 |
+
"model.layers.14.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
71 |
+
"model.layers.15.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
72 |
+
"model.layers.15.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
73 |
+
"model.layers.15.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
74 |
+
"model.layers.15.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
75 |
+
"model.layers.15.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
76 |
+
"model.layers.15.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
77 |
+
"model.layers.15.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
78 |
+
"model.layers.15.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
79 |
+
"model.layers.15.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
80 |
+
"model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
81 |
+
"model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
82 |
+
"model.layers.16.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
83 |
+
"model.layers.16.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
84 |
+
"model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
85 |
+
"model.layers.16.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
86 |
+
"model.layers.16.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
87 |
+
"model.layers.16.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
88 |
+
"model.layers.16.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
89 |
+
"model.layers.17.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
90 |
+
"model.layers.17.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
91 |
+
"model.layers.17.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
92 |
+
"model.layers.17.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
93 |
+
"model.layers.17.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
94 |
+
"model.layers.17.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
95 |
+
"model.layers.17.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
96 |
+
"model.layers.17.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
97 |
+
"model.layers.17.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
98 |
+
"model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
99 |
+
"model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
100 |
+
"model.layers.18.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
101 |
+
"model.layers.18.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
102 |
+
"model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
103 |
+
"model.layers.18.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
104 |
+
"model.layers.18.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
105 |
+
"model.layers.18.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
106 |
+
"model.layers.18.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
107 |
+
"model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
108 |
+
"model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00007.bin",
|
109 |
+
"model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
110 |
+
"model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
111 |
+
"model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00007.bin",
|
112 |
+
"model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
113 |
+
"model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
114 |
+
"model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
115 |
+
"model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
116 |
+
"model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
117 |
+
"model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
118 |
+
"model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
119 |
+
"model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
120 |
+
"model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
121 |
+
"model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
122 |
+
"model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
123 |
+
"model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
124 |
+
"model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
125 |
+
"model.layers.20.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
126 |
+
"model.layers.20.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
127 |
+
"model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00007.bin",
|
128 |
+
"model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00007.bin",
|
129 |
+
"model.layers.20.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
130 |
+
"model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00007.bin",
|
131 |
+
"model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00007.bin",
|
132 |
+
"model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00007.bin",
|
133 |
+
"model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00007.bin",
|
134 |
+
"model.layers.21.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
135 |
+
"model.layers.21.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
136 |
+
"model.layers.21.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
137 |
+
"model.layers.21.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
138 |
+
"model.layers.21.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
139 |
+
"model.layers.21.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
140 |
+
"model.layers.21.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
141 |
+
"model.layers.21.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
142 |
+
"model.layers.21.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
143 |
+
"model.layers.22.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
144 |
+
"model.layers.22.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
145 |
+
"model.layers.22.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
146 |
+
"model.layers.22.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
147 |
+
"model.layers.22.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
148 |
+
"model.layers.22.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
149 |
+
"model.layers.22.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
150 |
+
"model.layers.22.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
151 |
+
"model.layers.22.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
152 |
+
"model.layers.23.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
153 |
+
"model.layers.23.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
154 |
+
"model.layers.23.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
155 |
+
"model.layers.23.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
156 |
+
"model.layers.23.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
157 |
+
"model.layers.23.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
158 |
+
"model.layers.23.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
159 |
+
"model.layers.23.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
160 |
+
"model.layers.23.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
161 |
+
"model.layers.24.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
162 |
+
"model.layers.24.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
163 |
+
"model.layers.24.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
164 |
+
"model.layers.24.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
165 |
+
"model.layers.24.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
166 |
+
"model.layers.24.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
167 |
+
"model.layers.24.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
168 |
+
"model.layers.24.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
169 |
+
"model.layers.24.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
170 |
+
"model.layers.25.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
171 |
+
"model.layers.25.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
172 |
+
"model.layers.25.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
173 |
+
"model.layers.25.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
174 |
+
"model.layers.25.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
175 |
+
"model.layers.25.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
176 |
+
"model.layers.25.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
177 |
+
"model.layers.25.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
178 |
+
"model.layers.25.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
179 |
+
"model.layers.26.input_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
180 |
+
"model.layers.26.mlp.down_proj.weight": "pytorch_model-00004-of-00007.bin",
|
181 |
+
"model.layers.26.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
182 |
+
"model.layers.26.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
183 |
+
"model.layers.26.post_attention_layernorm.weight": "pytorch_model-00004-of-00007.bin",
|
184 |
+
"model.layers.26.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
185 |
+
"model.layers.26.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
186 |
+
"model.layers.26.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
187 |
+
"model.layers.26.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
188 |
+
"model.layers.27.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
189 |
+
"model.layers.27.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
190 |
+
"model.layers.27.mlp.gate_proj.weight": "pytorch_model-00004-of-00007.bin",
|
191 |
+
"model.layers.27.mlp.up_proj.weight": "pytorch_model-00004-of-00007.bin",
|
192 |
+
"model.layers.27.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
193 |
+
"model.layers.27.self_attn.k_proj.weight": "pytorch_model-00004-of-00007.bin",
|
194 |
+
"model.layers.27.self_attn.o_proj.weight": "pytorch_model-00004-of-00007.bin",
|
195 |
+
"model.layers.27.self_attn.q_proj.weight": "pytorch_model-00004-of-00007.bin",
|
196 |
+
"model.layers.27.self_attn.v_proj.weight": "pytorch_model-00004-of-00007.bin",
|
197 |
+
"model.layers.28.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
198 |
+
"model.layers.28.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
199 |
+
"model.layers.28.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
200 |
+
"model.layers.28.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
201 |
+
"model.layers.28.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
202 |
+
"model.layers.28.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
203 |
+
"model.layers.28.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
204 |
+
"model.layers.28.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
205 |
+
"model.layers.28.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
206 |
+
"model.layers.29.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
207 |
+
"model.layers.29.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
208 |
+
"model.layers.29.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
209 |
+
"model.layers.29.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
210 |
+
"model.layers.29.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
211 |
+
"model.layers.29.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
212 |
+
"model.layers.29.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
213 |
+
"model.layers.29.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
214 |
+
"model.layers.29.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
215 |
+
"model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
216 |
+
"model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
217 |
+
"model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
218 |
+
"model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
219 |
+
"model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
220 |
+
"model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
221 |
+
"model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
222 |
+
"model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
223 |
+
"model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
224 |
+
"model.layers.30.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
225 |
+
"model.layers.30.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
226 |
+
"model.layers.30.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
227 |
+
"model.layers.30.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
228 |
+
"model.layers.30.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
229 |
+
"model.layers.30.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
230 |
+
"model.layers.30.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
231 |
+
"model.layers.30.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
232 |
+
"model.layers.30.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
233 |
+
"model.layers.31.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
234 |
+
"model.layers.31.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
235 |
+
"model.layers.31.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
236 |
+
"model.layers.31.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
237 |
+
"model.layers.31.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
238 |
+
"model.layers.31.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
239 |
+
"model.layers.31.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
240 |
+
"model.layers.31.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
241 |
+
"model.layers.31.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
242 |
+
"model.layers.32.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
243 |
+
"model.layers.32.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
244 |
+
"model.layers.32.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
245 |
+
"model.layers.32.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
246 |
+
"model.layers.32.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
247 |
+
"model.layers.32.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
248 |
+
"model.layers.32.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
249 |
+
"model.layers.32.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
250 |
+
"model.layers.32.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
251 |
+
"model.layers.33.input_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
252 |
+
"model.layers.33.mlp.down_proj.weight": "pytorch_model-00005-of-00007.bin",
|
253 |
+
"model.layers.33.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
254 |
+
"model.layers.33.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
255 |
+
"model.layers.33.post_attention_layernorm.weight": "pytorch_model-00005-of-00007.bin",
|
256 |
+
"model.layers.33.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
257 |
+
"model.layers.33.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
258 |
+
"model.layers.33.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
259 |
+
"model.layers.33.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
260 |
+
"model.layers.34.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
261 |
+
"model.layers.34.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
262 |
+
"model.layers.34.mlp.gate_proj.weight": "pytorch_model-00005-of-00007.bin",
|
263 |
+
"model.layers.34.mlp.up_proj.weight": "pytorch_model-00005-of-00007.bin",
|
264 |
+
"model.layers.34.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
265 |
+
"model.layers.34.self_attn.k_proj.weight": "pytorch_model-00005-of-00007.bin",
|
266 |
+
"model.layers.34.self_attn.o_proj.weight": "pytorch_model-00005-of-00007.bin",
|
267 |
+
"model.layers.34.self_attn.q_proj.weight": "pytorch_model-00005-of-00007.bin",
|
268 |
+
"model.layers.34.self_attn.v_proj.weight": "pytorch_model-00005-of-00007.bin",
|
269 |
+
"model.layers.35.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
270 |
+
"model.layers.35.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
271 |
+
"model.layers.35.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
272 |
+
"model.layers.35.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
273 |
+
"model.layers.35.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
274 |
+
"model.layers.35.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
275 |
+
"model.layers.35.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
276 |
+
"model.layers.35.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
277 |
+
"model.layers.35.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
278 |
+
"model.layers.36.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
279 |
+
"model.layers.36.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
280 |
+
"model.layers.36.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
281 |
+
"model.layers.36.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
282 |
+
"model.layers.36.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
283 |
+
"model.layers.36.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
284 |
+
"model.layers.36.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
285 |
+
"model.layers.36.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
286 |
+
"model.layers.36.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
287 |
+
"model.layers.37.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
288 |
+
"model.layers.37.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
289 |
+
"model.layers.37.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
290 |
+
"model.layers.37.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
291 |
+
"model.layers.37.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
292 |
+
"model.layers.37.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
293 |
+
"model.layers.37.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
294 |
+
"model.layers.37.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
295 |
+
"model.layers.37.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
296 |
+
"model.layers.38.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
297 |
+
"model.layers.38.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
298 |
+
"model.layers.38.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
299 |
+
"model.layers.38.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
300 |
+
"model.layers.38.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
301 |
+
"model.layers.38.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
302 |
+
"model.layers.38.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
303 |
+
"model.layers.38.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
304 |
+
"model.layers.38.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
305 |
+
"model.layers.39.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
306 |
+
"model.layers.39.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
307 |
+
"model.layers.39.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
308 |
+
"model.layers.39.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
309 |
+
"model.layers.39.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
310 |
+
"model.layers.39.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
311 |
+
"model.layers.39.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
312 |
+
"model.layers.39.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
313 |
+
"model.layers.39.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
314 |
+
"model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
315 |
+
"model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
316 |
+
"model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
317 |
+
"model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
318 |
+
"model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
319 |
+
"model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
320 |
+
"model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
321 |
+
"model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
322 |
+
"model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
323 |
+
"model.layers.40.input_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
324 |
+
"model.layers.40.mlp.down_proj.weight": "pytorch_model-00006-of-00007.bin",
|
325 |
+
"model.layers.40.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
326 |
+
"model.layers.40.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
327 |
+
"model.layers.40.post_attention_layernorm.weight": "pytorch_model-00006-of-00007.bin",
|
328 |
+
"model.layers.40.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
329 |
+
"model.layers.40.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
330 |
+
"model.layers.40.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
331 |
+
"model.layers.40.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
332 |
+
"model.layers.41.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
333 |
+
"model.layers.41.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
334 |
+
"model.layers.41.mlp.gate_proj.weight": "pytorch_model-00006-of-00007.bin",
|
335 |
+
"model.layers.41.mlp.up_proj.weight": "pytorch_model-00006-of-00007.bin",
|
336 |
+
"model.layers.41.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
337 |
+
"model.layers.41.self_attn.k_proj.weight": "pytorch_model-00006-of-00007.bin",
|
338 |
+
"model.layers.41.self_attn.o_proj.weight": "pytorch_model-00006-of-00007.bin",
|
339 |
+
"model.layers.41.self_attn.q_proj.weight": "pytorch_model-00006-of-00007.bin",
|
340 |
+
"model.layers.41.self_attn.v_proj.weight": "pytorch_model-00006-of-00007.bin",
|
341 |
+
"model.layers.42.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
342 |
+
"model.layers.42.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
343 |
+
"model.layers.42.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
344 |
+
"model.layers.42.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
345 |
+
"model.layers.42.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
346 |
+
"model.layers.42.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
347 |
+
"model.layers.42.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
348 |
+
"model.layers.42.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
349 |
+
"model.layers.42.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
350 |
+
"model.layers.43.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
351 |
+
"model.layers.43.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
352 |
+
"model.layers.43.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
353 |
+
"model.layers.43.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
354 |
+
"model.layers.43.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
355 |
+
"model.layers.43.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
356 |
+
"model.layers.43.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
357 |
+
"model.layers.43.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
358 |
+
"model.layers.43.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
359 |
+
"model.layers.44.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
360 |
+
"model.layers.44.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
361 |
+
"model.layers.44.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
362 |
+
"model.layers.44.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
363 |
+
"model.layers.44.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
364 |
+
"model.layers.44.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
365 |
+
"model.layers.44.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
366 |
+
"model.layers.44.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
367 |
+
"model.layers.44.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
368 |
+
"model.layers.45.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
369 |
+
"model.layers.45.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
370 |
+
"model.layers.45.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
371 |
+
"model.layers.45.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
372 |
+
"model.layers.45.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
373 |
+
"model.layers.45.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
374 |
+
"model.layers.45.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
375 |
+
"model.layers.45.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
376 |
+
"model.layers.45.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
377 |
+
"model.layers.46.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
378 |
+
"model.layers.46.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
379 |
+
"model.layers.46.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
380 |
+
"model.layers.46.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
381 |
+
"model.layers.46.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
382 |
+
"model.layers.46.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
383 |
+
"model.layers.46.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
384 |
+
"model.layers.46.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
385 |
+
"model.layers.46.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
386 |
+
"model.layers.47.input_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
387 |
+
"model.layers.47.mlp.down_proj.weight": "pytorch_model-00007-of-00007.bin",
|
388 |
+
"model.layers.47.mlp.gate_proj.weight": "pytorch_model-00007-of-00007.bin",
|
389 |
+
"model.layers.47.mlp.up_proj.weight": "pytorch_model-00007-of-00007.bin",
|
390 |
+
"model.layers.47.post_attention_layernorm.weight": "pytorch_model-00007-of-00007.bin",
|
391 |
+
"model.layers.47.self_attn.k_proj.weight": "pytorch_model-00007-of-00007.bin",
|
392 |
+
"model.layers.47.self_attn.o_proj.weight": "pytorch_model-00007-of-00007.bin",
|
393 |
+
"model.layers.47.self_attn.q_proj.weight": "pytorch_model-00007-of-00007.bin",
|
394 |
+
"model.layers.47.self_attn.v_proj.weight": "pytorch_model-00007-of-00007.bin",
|
395 |
+
"model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
396 |
+
"model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00007.bin",
|
397 |
+
"model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
398 |
+
"model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
399 |
+
"model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00007.bin",
|
400 |
+
"model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
401 |
+
"model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
402 |
+
"model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
403 |
+
"model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
404 |
+
"model.layers.6.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
405 |
+
"model.layers.6.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
406 |
+
"model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00007.bin",
|
407 |
+
"model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00007.bin",
|
408 |
+
"model.layers.6.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
409 |
+
"model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00007.bin",
|
410 |
+
"model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00007.bin",
|
411 |
+
"model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00007.bin",
|
412 |
+
"model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00007.bin",
|
413 |
+
"model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
414 |
+
"model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
415 |
+
"model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
416 |
+
"model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
417 |
+
"model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
418 |
+
"model.layers.7.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
419 |
+
"model.layers.7.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
420 |
+
"model.layers.7.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
421 |
+
"model.layers.7.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
422 |
+
"model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
423 |
+
"model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
424 |
+
"model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
425 |
+
"model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
426 |
+
"model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
427 |
+
"model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
428 |
+
"model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
429 |
+
"model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
430 |
+
"model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
431 |
+
"model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
432 |
+
"model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00007.bin",
|
433 |
+
"model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00007.bin",
|
434 |
+
"model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00007.bin",
|
435 |
+
"model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00007.bin",
|
436 |
+
"model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00007.bin",
|
437 |
+
"model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00007.bin",
|
438 |
+
"model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00007.bin",
|
439 |
+
"model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00007.bin",
|
440 |
+
"model.norm.weight": "pytorch_model-00007-of-00007.bin"
|
441 |
+
}
|
442 |
+
}
|