File size: 7,758 Bytes
27975e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760c7c5
27975e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760c7c5
 
27975e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760c7c5
27975e4
760c7c5
27975e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760c7c5
27975e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760c7c5
27975e4
760c7c5
27975e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760c7c5
 
27975e4
 
 
 
760c7c5
 
27975e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
760c7c5
 
 
27975e4
 
 
 
 
 
 
760c7c5
27975e4
 
 
 
 
760c7c5
 
27975e4
 
760c7c5
27975e4
 
 
 
 
 
760c7c5
 
27975e4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
---
language: en
license: apache-2.0
library_name: pytorch
tags:
- deep-reinforcement-learning
- reinforcement-learning
- DI-engine
- Walker2d-v3
benchmark_name: OpenAI/Gym/MuJoCo
task_name: Walker2d-v3
pipeline_tag: reinforcement-learning
model-index:
- name: PPO
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: OpenAI/Gym/MuJoCo-Walker2d-v3
      type: OpenAI/Gym/MuJoCo-Walker2d-v3
    metrics:
    - type: mean_reward
      value: 3981.94 +/- 1332.9
      name: mean_reward
---

# Play **Walker2d-v3** with **PPO** Policy

## Model Description
<!-- Provide a longer summary of what this model is. -->
This is a simple **PPO** implementation to OpenAI/Gym/MuJoCo **Walker2d-v3** using the [DI-engine library](https://github.com/opendilab/di-engine) and the [DI-zoo](https://github.com/opendilab/DI-engine/tree/main/dizoo).

**DI-engine** is a python library for solving general decision intelligence problems, which is based on implementations of reinforcement learning framework using PyTorch or JAX. This library aims to standardize the reinforcement learning framework across different algorithms, benchmarks, environments, and to support both academic researches and prototype applications. Besides, self-customized training pipelines and applications are supported  by reusing different abstraction levels of DI-engine reinforcement learning framework.



## Model Usage
### Install the Dependencies
<details close>
<summary>(Click for Details)</summary>

```shell
# install huggingface_ding
git clone https://github.com/opendilab/huggingface_ding.git
pip3 install -e ./huggingface_ding/
# install environment dependencies if needed

sudo apt update -y     && sudo apt install -y     build-essential     libgl1-mesa-dev     libgl1-mesa-glx     libglew-dev     libosmesa6-dev     libglfw3     libglfw3-dev     libsdl2-dev     libsdl2-image-dev     libglm-dev     libfreetype6-dev     patchelf

mkdir -p ~/.mujoco
wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz -O mujoco.tar.gz
tar -xf mujoco.tar.gz -C ~/.mujoco
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin" >> ~/.bashrc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin
pip3 install "cython<3"
pip3 install DI-engine[common_env,video]

```
</details>

### Git Clone from Huggingface and Run the Model

<details close>
<summary>(Click for Details)</summary>

```shell
# running with trained model
python3 -u run.py
```
**run.py**
```python
from ding.bonus import PPOF
from ding.config import Config
from easydict import EasyDict
import torch

# Pull model from files which are git cloned from huggingface
policy_state_dict = torch.load("pytorch_model.bin", map_location=torch.device("cpu"))
cfg = EasyDict(Config.file_to_dict("policy_config.py").cfg_dict)
# Instantiate the agent
agent = PPOF(env_id="Walker2d-v3", exp_name="Walker2d-v3-PPO", cfg=cfg.exp_config, policy_state_dict=policy_state_dict)
# Continue training
agent.train(step=5000)
# Render the new agent performance
agent.deploy(enable_save_replay=True)

```
</details>

### Run Model by Using Huggingface_ding

<details close>
<summary>(Click for Details)</summary>

```shell
# running with trained model
python3 -u run.py
```
**run.py**
```python
from ding.bonus import PPOF
from huggingface_ding import pull_model_from_hub

# Pull model from Hugggingface hub
policy_state_dict, cfg = pull_model_from_hub(repo_id="OpenDILabCommunity/Walker2d-v3-PPO")
# Instantiate the agent
agent = PPOF(env_id="Walker2d-v3", exp_name="Walker2d-v3-PPO", cfg=cfg.exp_config, policy_state_dict=policy_state_dict)
# Continue training
agent.train(step=5000)
# Render the new agent performance
agent.deploy(enable_save_replay=True)

```
</details>

## Model Training

### Train the Model and Push to Huggingface_hub

<details close>
<summary>(Click for Details)</summary>

```shell
#Training Your Own Agent
python3 -u train.py
```
**train.py**
```python
from ding.bonus import PPOF
from huggingface_ding import push_model_to_hub

# Instantiate the agent
agent = PPOF(env_id="Walker2d-v3", exp_name="Walker2d-v3-PPO")
# Train the agent
return_ = agent.train(step=int(5000000))
# Push model to huggingface hub
push_model_to_hub(
    agent=agent.best,
    env_name="OpenAI/Gym/MuJoCo",
    task_name="Walker2d-v3",
    algo_name="PPO",
    wandb_url=return_.wandb_url,
    github_repo_url="https://github.com/opendilab/DI-engine",
    github_doc_model_url="https://di-engine-docs.readthedocs.io/en/latest/12_policies/ppo.html",
    github_doc_env_url="https://di-engine-docs.readthedocs.io/en/latest/13_envs/mujoco.html",
    installation_guide='''
sudo apt update -y \
    && sudo apt install -y \
    build-essential \
    libgl1-mesa-dev \
    libgl1-mesa-glx \
    libglew-dev \
    libosmesa6-dev \
    libglfw3 \
    libglfw3-dev \
    libsdl2-dev \
    libsdl2-image-dev \
    libglm-dev \
    libfreetype6-dev \
    patchelf

mkdir -p ~/.mujoco
wget https://mujoco.org/download/mujoco210-linux-x86_64.tar.gz -O mujoco.tar.gz
tar -xf mujoco.tar.gz -C ~/.mujoco
echo "export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin" >> ~/.bashrc
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mjpro210/bin:~/.mujoco/mujoco210/bin
pip3 install "cython<3"
pip3 install DI-engine[common_env,video]
''',
    usage_file_by_git_clone="./ppo/walker2d_ppo_deploy.py",
    usage_file_by_huggingface_ding="./ppo/walker2d_ppo_download.py",
    train_file="./ppo/walker2d_ppo.py",
    repo_id="OpenDILabCommunity/Walker2d-v3-PPO",
    create_repo=False
)

```
</details>

**Configuration**
<details close>
<summary>(Click for Details)</summary>


```python
exp_config = {
    'type': 'ppo',
    'on_policy': True,
    'cuda': True,
    'action_space': 'continuous',
    'discount_factor': 0.99,
    'gae_lambda': 0.95,
    'epoch_per_collect': 10,
    'batch_size': 320,
    'learning_rate': 0.0003,
    'lr_scheduler': None,
    'weight_decay': 0,
    'value_weight': 0.5,
    'entropy_weight': 0.01,
    'clip_ratio': 0.2,
    'adv_norm': True,
    'value_norm': 'baseline',
    'ppo_param_init': True,
    'grad_norm': 0.5,
    'n_sample': 3200,
    'unroll_len': 1,
    'deterministic_eval': True,
    'model': {},
    'cfg_type': 'PPOFPolicyDict',
    'env_id': 'Walker2d-v3',
    'exp_name': 'Walker2d-v3-PPO'
}

```
</details>

**Training Procedure** 
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
- **Weights & Biases (wandb):** [monitor link](https://wandb.ai/zjowowen/Walker2d-v3-PPO)

## Model Information
<!-- Provide the basic links for the model. -->
- **Github Repository:** [repo link](https://github.com/opendilab/DI-engine)
- **Doc**: [DI-engine-docs Algorithm link](https://di-engine-docs.readthedocs.io/en/latest/12_policies/ppo.html)
- **Configuration:** [config link](https://huggingface.co/OpenDILabCommunity/Walker2d-v3-PPO/blob/main/policy_config.py)
- **Demo:** [video](https://huggingface.co/OpenDILabCommunity/Walker2d-v3-PPO/blob/main/replay.mp4)
<!-- Provide the size information for the model. -->
- **Parameters total size:** 385.85 KB
- **Last Update Date:** 2023-09-25

## Environments
<!-- Address questions around what environment the model is intended to be trained and deployed at, including the necessary information needed to be provided for future users. -->
- **Benchmark:** OpenAI/Gym/MuJoCo
- **Task:** Walker2d-v3
- **Gym version:** 0.25.1
- **DI-engine version:** v0.4.9
- **PyTorch version:** 2.0.1+cu117
- **Doc**: [DI-engine-docs Environments link](https://di-engine-docs.readthedocs.io/en/latest/13_envs/mujoco.html)