czczup commited on
Commit
6c629fc
1 Parent(s): 44e13c2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -1
README.md CHANGED
@@ -15,7 +15,7 @@ pipeline_tag: image-feature-extraction
15
  <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/AUE-3OBtfr9vDA7Elgkhd.webp" alt="Image Description" width="300" height="300">
16
  </p>
17
 
18
- \[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]
19
 
20
  We develop InternViT-6B-448px-V1-5 based on the pre-training of the strong foundation of [InternViT-6B-448px-V1.2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2). In this update, the resolution of training images is expanded from 448&times;448 to dynamic 448&times;448, where the basic tile size is 448&times;448 and the number of tiles ranges from 1 to 12.
21
  Additionally, we enhance the data scale, quality, and diversity of the pre-training dataset, resulting in the powerful robustness, OCR capability, and high-resolution processing capability of our
 
15
  <img src="https://cdn-uploads.huggingface.co/production/uploads/64119264f0f81eb569e0d569/AUE-3OBtfr9vDA7Elgkhd.webp" alt="Image Description" width="300" height="300">
16
  </p>
17
 
18
+ \[[InternVL 1.5 Technical Report](https://arxiv.org/abs/2404.16821)\] \[[Paper](https://arxiv.org/abs/2312.14238)\] \[[GitHub](https://github.com/OpenGVLab/InternVL)\] \[[Chat Demo](https://internvl.opengvlab.com/)\] \[[中文解读](https://zhuanlan.zhihu.com/p/675877376)]
19
 
20
  We develop InternViT-6B-448px-V1-5 based on the pre-training of the strong foundation of [InternViT-6B-448px-V1.2](https://huggingface.co/OpenGVLab/InternViT-6B-448px-V1-2). In this update, the resolution of training images is expanded from 448&times;448 to dynamic 448&times;448, where the basic tile size is 448&times;448 and the number of tiles ranges from 1 to 12.
21
  Additionally, we enhance the data scale, quality, and diversity of the pre-training dataset, resulting in the powerful robustness, OCR capability, and high-resolution processing capability of our