File size: 29,973 Bytes
16dc4f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 |
import io
import logging
import json
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import MSELoss
from transformers.modeling_outputs import (
CausalLMOutputWithPast,
)
from typing import List, Optional, Tuple, Union
from transformers import LlamaForCausalLM
from transformers.modeling_outputs import (
CausalLMOutputWithPast,
)
from torch.cuda.amp import autocast as autocast
import torch.nn.functional as F
import numpy as np
from .modeling_vit import build_vit, MLP, PostProcess
from .modeling_qformer import build_qformer
from .modeling_base import BaseMLLM
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
logger = logging.getLogger(__name__)
import pycocotools.mask as mask_util
from .modeling_base import VID_TOKEN, IMG_TOKEN
class MultiModalLLM_PT(BaseMLLM):
def __init__(
self,
config,
_tokenizer=None
):
super().__init__(config=config, _tokenizer=_tokenizer)
self.use_clip = False
self.num_frames = 16
self.num_clips = 1
self.token_merge_len = 4
self.per_clip_frames = self.num_frames // self.num_clips
print(self.config)
self.merge_proj = nn.Linear(
self.qformer.config.hidden_size*self.token_merge_len, self.config.hidden_size
)
if config.build_decoder:
self.track_embed = MLP(self.config.hidden_size, self.config.hidden_size, 3 * 256, 2, dropout=0)
self.track_embed_decode2 = MLP(4096, 4096, 4, 2, dropout=0)
self.temporal_embed = MLP(self.config.hidden_size, self.config.hidden_size, 2, 2, dropout=0.3)
self.action_embed = MLP(self.config.hidden_size, self.config.hidden_size, 1, 2, dropout=0.3)
self.postprocess = PostProcess()
self.track_token = nn.Parameter(torch.randn((1, 1, 4096)))
self.temporal_token = nn.Parameter(torch.randn((1, 1, 4096)))
self.box_token = nn.Parameter(torch.randn((1, 1, 4096)))
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
instruction = None,
video_idx = None,
image_idx = None,
output_boxes = None, # REC
input_boxes = None, # tracking inputs
text_input = None,
video_info = None,
temporal_labels = None,
gt_masks = None,
sam_images = None,
size_hw = None,
path = None,
mask_path = None,
tvg_inputs = None,
tvg_targets = None,
):
if text_input is not None:
time_instructions = self.get_clip_time_instruct(text_input)
else:
time_instructions = None
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, return_visual=False,
video_idx=video_idx, image_idx=image_idx, instruction = instruction,
output_boxes = output_boxes, input_boxes=input_boxes, time_instructions = time_instructions)
outputs = self.lm(
inputs_embeds=text_embeds,
attention_mask=attention_mask,
labels=labels,
output_hidden_states=True,
return_dict=True,
)
loss = outputs.loss
logger.info(f'llm loss:{loss}')
if output_boxes is not None and self.use_bbox_loss:
last_hidden_states = outputs.hidden_states[-1]
pred_locs = []
for idx in range(last_hidden_states.shape[0]):
loc_positions = ( (input_ids[idx].flatten() == self.tokenizer.box_token) ).nonzero().flatten()
selected_hidden_states = last_hidden_states[idx][loc_positions]
pred_locs.append(self.loc_decoder(selected_hidden_states))
box_loss = self.box_loss(pred_locs, output_boxes)
logger.info(f'box loss:{box_loss}')
loss += box_loss
if (gt_masks is not None or input_boxes is not None) and self.use_mask_loss:
last_hidden_states = outputs.hidden_states[-1]
pred_masks = []
sam_losses = []
box_losses = []
for idx in range(last_hidden_states.shape[0]):
loc_positions = ( (input_ids[idx].flatten() == self.tokenizer.track_token) ).nonzero().flatten()
selected_hidden_states = last_hidden_states[idx][loc_positions]
embed_sam_boxes = self.track_embed(selected_hidden_states).reshape(1, 3, 256)
inference_state = self.sam.init_state_images(sam_images, size_hw[idx][0], size_hw[idx][1])
if input_boxes is not None:
gt_embeds = self.sam.get_prompt_embeding(inference_state, None, None, False, input_boxes[idx], device = text_embeds.device)
else:
input_boxes = self.find_boundaries_torch(gt_masks.squeeze(0)[:,:,:1].squeeze(2).cpu()).to(text_embeds.device)
gt_embeds = self.sam.get_prompt_embeding(inference_state, None, None, False, input_boxes, device = text_embeds.device)
pred_locs = [self.track_embed_decode2((selected_hidden_states))[0]]
target_boxes = [input_boxes[idx]]
src_boxes = pred_locs
loss_bbox = self.box_loss2(src_boxes, target_boxes)
loss_bbox = self.masked_loss(loss_bbox, 0)
box_losses.append(loss_bbox)
sam_losses.append( F.l1_loss(embed_sam_boxes, gt_embeds))
logger.info(f'refering sam loss:{sam_losses}')
sam_losses = torch.stack(sam_losses)
box_losses = torch.stack(box_losses)
loss += torch.mean(sam_losses)
loss += torch.mean(box_losses)
if tvg_inputs is not None and self.use_temporal_loss:
last_hidden_states = outputs.hidden_states[-1] # [bsz,1024, 4096]
last_hidden_states = last_hidden_states.view(-1, last_hidden_states.size(-1)) # [bsz*1024, 4096]
loc_positions = (input_ids.flatten()==self.tokenizer.temp_token).nonzero().flatten() # [bsz]
prompt_token = last_hidden_states[loc_positions]
prompt_token = prompt_token.view(input_ids.shape[0], -1 ,prompt_token.shape[-1]) # [bsz, 1, 4096]
cg_outputs = self.cg_model(**tvg_inputs, targets=tvg_targets, prompt_token=prompt_token)
loss_dict = self.cg_criterion(cg_outputs, tvg_targets)
weight_dict = self.cg_criterion.weight_dict
tvg_loss = 0.05*sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
logger.info(f'tvg_loss:{tvg_loss}')
loss += tvg_loss
logger.info(f'all loss:{loss}')
return CausalLMOutputWithPast(
loss=loss,
logits=outputs.logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def pad_text_embeds(
self,
input_ids: torch.LongTensor = None,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
image_idx = None,
video_idx = None,
return_visual: bool = False,
instruction = None,
output_boxes = None, # boxes for REC
input_boxes = None, # boxes for tracking
time_instructions = None,
):
text_embeds = self.lm.get_input_embeddings()(input_ids.long()).detach()
if input_boxes is not None:
input_boxes = input_boxes[0].to(dtype=text_embeds.dtype)
boxes_emb = self.loc_encoder(input_boxes)
boxes_emb = boxes_emb.view(-1, 4096)
text_embeds[input_ids == torch.full_like(input_ids, self.tokenizer.track_box_token)] = text_embeds[input_ids == torch.full_like(input_ids, self.tokenizer.track_box_token)] * 0 + boxes_emb.to(text_embeds.device)
logger.info(f'embedings:{text_embeds[input_ids == torch.full_like(input_ids, self.tokenizer.track_box_token)].shape}')
visual = None
visual_idx = None
if image is not None:
B, T, C, H, W = image.shape
image = image.permute(0, 2, 1, 3, 4)
instruction = None
prompt_image_embeds = self.encode_vision(image, instruction)
visual = prompt_image_embeds
prompt_image_embeds = self.project_up(prompt_image_embeds) # 768 -> 4096
prompt_image_embeds = prompt_image_embeds.view(-1, prompt_image_embeds.shape[-1])
visual_idx = image_idx
prompt_image_embeds = prompt_image_embeds.to(dtype=text_embeds.dtype)
text_embeds[image_idx == 1] = torch.zeros_like(text_embeds[image_idx == 1]) + prompt_image_embeds.to(text_embeds.device)
elif video is not None:
if len(video.shape) == 5:
B, T, C, H, W = video.shape
N = 1
if self.use_clip:
video = video.reshape(B*self.num_clips, T//self.num_clips, C, H, W) # [16, 8, 3, 224, 224]
else:
B, N, T, C, H, W = video.shape
video = video.permute(0,2,1,3,4) #
prompt_video_embeds = self.encode_vision(video, instruction=time_instructions) # [2, 96, 768]
if self.use_clip:
prompt_video_embeds = prompt_video_embeds.reshape(B,-1,prompt_video_embeds.shape[-1]) # [2,8*96,768]
batch_size, img_len, token_dim = prompt_video_embeds.shape
prompt_video_embeds = prompt_video_embeds.view(batch_size, img_len // self.token_merge_len, self.token_merge_len * token_dim) # [B, 768//4, 4*768] = [2, 192, 3072]
prompt_video_embeds = self.merge_proj(prompt_video_embeds) # [2, 192, 4096]
prompt_video_embeds = prompt_video_embeds.view(-1, prompt_video_embeds.shape[-1]) # [2*192, 4096]
else:
prompt_video_embeds = self.project_up(prompt_video_embeds) # [2, 96, 4096]
prompt_video_embeds = prompt_video_embeds.view(-1, prompt_video_embeds.shape[-1])
visual_idx = video_idx
text_embeds[video_idx == 1] = torch.zeros_like(text_embeds[video_idx == 1]) + prompt_video_embeds.to(text_embeds.device).to(text_embeds.dtype)
else:
logger.warn(f"don't get visual input, input_ids: {input_ids}")
for idx, text_embed in enumerate(text_embeds):
if text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.box_token].shape[0] != 0:
text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.box_token] = torch.zeros_like(text_embeds[idx][input_ids[idx] == self.tokenizer.box_token]) + torch.cat([self.box_token.squeeze(0)] * (text_embeds[idx][input_ids[idx] == self.tokenizer.box_token]).shape[0]).to(text_embeds.dtype)
if text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.temp_token].shape[0] != 0:
text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.temp_token] = torch.zeros_like(text_embeds[idx][input_ids[idx] == self.tokenizer.temp_token]) + self.temporal_token
if text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.track_token].shape[0] != 0:
text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.track_token] = torch.zeros_like(text_embeds[idx][input_ids[idx] == self.tokenizer.track_token]) + self.track_token
if return_visual:
return text_embeds, visual, visual_idx
return text_embeds
def temporal_decode(self, temporal_embedding):
pred_sted = self.temporal_embed(temporal_embedding)
pred_actioness = self.action_embed(temporal_embedding)
return pred_sted, pred_actioness
def box_loss2(self, src_boxes, target_boxes):
src_boxes = torch.cat(src_boxes)
target_boxes = torch.cat(target_boxes)
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
loss_bbox = self.masked_loss(loss_bbox, 0)
mask = (src_boxes[2:] >= src_boxes[:2]).all(-1)
src_boxes = src_boxes[mask]
target_boxes = target_boxes[mask]
return loss_bbox
def box_loss(self, src_boxes, target_boxes):
src_boxes = torch.cat(src_boxes)
target_boxes = torch.cat(target_boxes)
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
loss_bbox = self.masked_loss(loss_bbox, 0)
mask = (src_boxes[:, 2:] >= src_boxes[ :, :2]).all(-1)
src_boxes = src_boxes[mask]
target_boxes = target_boxes[mask]
if src_boxes.shape[0] > 0:
loss_giou = 1 - torch.diag(generalized_box_iou(
src_boxes,
target_boxes))
loss_giou = self.masked_loss(loss_giou, 0)
else:
loss_giou = torch.tensor(2, dtype=src_boxes.dtype)
iou, union = box_iou(src_boxes, target_boxes)
return loss_bbox * 2 + loss_giou / 5
def find_boundaries_torch(self, mask):
from skimage.segmentation import find_boundaries
mask_np = mask.to(torch.bool).numpy()
boundaries = find_boundaries(mask_np, mode='outer')
boundary_points = np.argwhere(boundaries)
if boundary_points.size == 0:
return torch.tensor([-1, -1, -1, -1], dtype = torch.bfloat16)
h0, w0 = boundary_points.min(axis=0)
h1, w1 = boundary_points.max(axis=0)
return torch.tensor([w0 / mask.shape[1], h0 / mask.shape[0], w1 / mask.shape[1], h1 / mask.shape[0]], dtype = torch.bfloat16)
def sam_loss(self, sam_outputs, gt_masks):
bound1 = self.find_boundaries_torch(gt_masks[:,:,:1].squeeze(2).cpu())
bound2 = self.find_boundaries_torch(sam_outputs[:,:,:1].squeeze(2).cpu())
lossl1 = F.l1_loss(bound1, bound2, reduction='none')
lossl1 = self.masked_loss(lossl1, 0)
loss_iou = self.iou_loss(sam_outputs, gt_masks)
loss_dice = self.dice_loss(sam_outputs, gt_masks)
# print(f'mask loss:{loss_iou, loss_dice}')
return loss_iou + loss_dice + lossl1
def masked_loss(self, loss, n):
mask = torch.ones_like(loss)
# mask[-n:] = 1e-10
loss = (loss*mask).sum()/(mask.sum())
return loss
def encode_vision(
self,
image,
instruction
):
device = image.device
B = image.shape[0]
T = image.shape[2]
use_image = True if T == 1 else False
image_embeds = self.vision_encoder(image, use_image=use_image)
C = image_embeds.shape[-1]
image_embeds = image_embeds.reshape(B, -1, C)
image_embeds = self.vision_layernorm(image_embeds).to(device) # [B, T*L, C]
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
if self.extra_num_query_token > 0:
query_tokens = torch.cat([self.query_tokens, self.extra_query_tokens], dim=1)
query_tokens = query_tokens.expand(image_embeds.shape[0], -1, -1)
if instruction is not None:
text_Qformer = self.qformer_tokenizer(
instruction,
padding='longest',
truncation=True,
max_length=512,
return_tensors="pt",
).to(image_embeds.device)
query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image_embeds.device)
Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
query_output = self.qformer.bert(
text_Qformer.input_ids,
attention_mask=Qformer_atts,
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
else:
query_output = self.qformer.bert(
query_embeds=query_tokens,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
return query_output.last_hidden_state[:, :query_tokens.size(1), :]
def generate_caption(
self,
input_ids,
attention_mask,
image_idx = None,
video_idx = None,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
num_beams=1,
max_new_tokens=200,
do_sample=True,
top_p=0.9,
top_k=None,
temperature=1.0,
length_penalty=1,
repetition_penalty=1.0,
):
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, image_idx=image_idx, video_idx=video_idx)
outputs = self.lm.generate(
inputs_embeds=text_embeds,
attention_mask=attention_mask,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
min_length=1,
top_p=top_p,
top_k=top_k,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
)
return outputs
def generate_caption_bbox(
self,
input_ids,
attention_mask,
labels,
image_idx = None,
video_idx = None,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
num_beams=1,
max_new_tokens=200,
do_sample=True,
top_p=0.9,
top_k=None,
temperature=0.9,
length_penalty=1,
repetition_penalty=1.0,
):
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, image_idx=image_idx, video_idx=video_idx)
outputs = self.lm.generate(
inputs_embeds=text_embeds,
attention_mask=attention_mask,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
min_length=1,
top_p=top_p,
top_k=top_k,
temperature=temperature,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
)
decoded_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# torch.save({'text':decoded_text, 'output':{outputs}}, 'tmp.pth')
# print(decoded_text)
return outputs
def generate_temporal(self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
image: Optional[torch.Tensor] = None,
video: Optional[torch.Tensor] = None,
instruction = None,
video_idx = None,
image_idx = None,
boxes = None,
text_input = None,
video_info = None,
temporal_labels = None):
if text_input is not None:
time_instructions = self.get_clip_time_instruct(text_input)
else:
time_instructions = None
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, return_visual=False,
video_idx=video_idx, image_idx=image_idx, instruction = instruction,
boxes = boxes, time_instructions = time_instructions)
# TODO
outputs = self.lm(
inputs_embeds=text_embeds,
attention_mask=attention_mask,
labels=labels,
output_hidden_states=True,
return_dict=True,
)
if temporal_labels is not None:
start_sec = temporal_labels["start_sec"]
end_sec = temporal_labels["end_sec"]
fps = video_info['fps']
frame_indices = video_info['frame_indices']
last_hidden_states = outputs.hidden_states[-1] # [2,1024, 4096]
last_hidden_states = last_hidden_states.view(-1, last_hidden_states.size(-1)) # [2048, 4096]
loc_positions = (input_ids.flatten()==self.tokenizer.temp_place_ids).nonzero().flatten() #
selected_hidden_states = last_hidden_states[loc_positions]
selected_hidden_states = selected_hidden_states.view(input_ids.shape[0], -1 ,selected_hidden_states.shape[-1]) # [2, 64, 4096]
# just for debug
# vis_embed = vis_embed[:,:64,:]
pred_sted, pred_actionness = self.temporal_decode(selected_hidden_states) # [2,64,2] [2,64,1]
pred_sted = self.postprocess(pred_sted, frame_indices)
pred_sec_s = pred_sted[0][0] / fps[0][0].item()
pred_sec_e = pred_sted[0][1] / fps[0][0].item()
output_file = "predictions2.jsonl"
prediction = {"pred_sec_s": round(pred_sec_s, 1), "pred_sec_e": round(pred_sec_e, 1), "start_sec":float(start_sec[0]), "end_sec": float(end_sec[0])}
with open(output_file, 'a') as f:
json.dump(prediction, f)
f.write('\n')
return outputs
def generate_seg(self, input_ids, attention_mask, labels, image, image_idx, video, video_idx, input_boxes, size_hw, sam_images):
device = input_ids.device
prompt = input_ids
l_prompt = len(input_ids)
temperature = 1e-5
max_new_tokens = 20
guide_w = 5
stop_str = '</s>'
bbox = []
output_ids = list(input_ids[0])
text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, image_idx=image_idx, video_idx=video_idx, return_visual=False,
instruction = None, output_boxes=None, input_boxes=input_boxes)
for i in range(max_new_tokens):
if i == 0:
outputs = self.lm(
inputs_embeds=text_embeds,
attention_mask=attention_mask,
output_hidden_states=True,
return_dict=True,
)
logits = outputs.logits
past_key_values = outputs.past_key_values
else:
attention_mask = torch.ones(1, past_key_values[0][0].shape[-2] + 1, device=device)
last_text_embeds = self.lm.get_input_embeddings()(torch.tensor(output_ids[-1], device=device).long()).detach().unsqueeze(0)
last_text_embeds = last_text_embeds.unsqueeze(0)
out = self.lm(
input_ids=None,
use_cache=True,
attention_mask=attention_mask,
output_hidden_states=True,
inputs_embeds=last_text_embeds,
past_key_values=past_key_values,
)
logits = out.logits
past_key_values = out.past_key_values
if logits is not None:
last_token_logits = logits[0][-1]
if temperature < 1e-4:
token = int(torch.argmax(last_token_logits))
else:
probs = torch.softmax(last_token_logits / temperature, dim=-1)
token = int(torch.multinomial(probs, num_samples=1))
output_ids.append(token)
ret = self.tokenizer.decode(token)
if ret == '<box_begin>':
attention_mask = torch.ones(1, past_key_values[0][0].shape[-2] + 1, device=device)
bbox_embeds = self.box_token.bfloat16()
out = self.lm(
inputs_embeds=bbox_embeds,
use_cache=True,
attention_mask=attention_mask,
output_hidden_states=True,
past_key_values=past_key_values
)
last_hidden_states = out.hidden_states[-1]
selected_hidden_states = last_hidden_states[0][0]
bbox.append(self.loc_decoder(selected_hidden_states))
last_token_logits = logits[0][-1]
if temperature < 1e-4:
token = int(torch.argmax(last_token_logits))
else:
probs = torch.softmax(last_token_logits / temperature, dim=-1)
token = int(torch.multinomial(probs, num_samples=1))
if ret == '<track_begin>':
attention_mask = torch.ones(1, past_key_values[0][0].shape[-2] + 1, device=device)
tracking_embeds = self.track_token
out = self.lm(
inputs_embeds=tracking_embeds,
use_cache=True,
attention_mask=attention_mask,
output_hidden_states=True,
past_key_values=past_key_values
)
last_hidden_states = out.hidden_states[-1]
selected_hidden_states = last_hidden_states[0][0].to(dtype = torch.bfloat16)
embed_sam_boxes = self.track_embed(selected_hidden_states).reshape(1, 3, 256)
inference_state = self.sam.init_state_images(sam_images, size_hw[0][0], size_hw[0][1])
gt_embeds = self.sam.get_prompt_embeding(inference_state, None, None, False, input_boxes[0].cuda(), device = text_embeds.device)
ann_frame_idx = 0
ann_obj_id = 0
box = np.array([0, 0, 0, 0], dtype=np.float32)
_, out_obj_ids, out_mask_logits = self.sam.add_new_box_embeding(
inference_state=inference_state,
frame_idx=ann_frame_idx,
obj_id=ann_obj_id,
box=box,
box_embeding=embed_sam_boxes,
)
video_segments = {} # video_segments contains the per-frame segmentation results
for out_frame_idx, out_obj_ids, out_mask_logits in self.sam.propagate_in_video(inference_state):
video_segments[out_frame_idx] = {
out_obj_id: (out_mask_logits[i] > 0.0)
for i, out_obj_id in enumerate(out_obj_ids)
}
video_segments = [video_segments[tt][0] for tt in video_segments]
# bbox = model.find_boundaries_torch(video_segments[0].squeeze(0).cpu())
# return ret, [], video_segments
if (ret == '</s>'):
break
ret = self.tokenizer.decode(output_ids)
del past_key_values
return ret, bbox, video_segments
def generate_answer(self, tokenizer, instruction, msg, user_prompt, media_type="video",video_tensor=None, image_tensor=None, answer_prompt=None, chat_history=[],return_history=False, debug=False, generation_config={}):
input_ids, attention_masks, labels = [], [], []
conversation = ""
if instruction:
conversation += instruction
conversation += (
"[INST]" + " "
)
if media_type == 'image':
conversation +=( "<Image>" + IMG_TOKEN + "</Image>")
else:
conversation += ("<Video>" + VID_TOKEN + "</Video>")
conversation += ( msg.rstrip() + "[/INST]")
for q,a in chat_history:
conversation += (" [INST] " + q + " [/INST]")
conversation += (a + "</s>")
conversation += (" [INST] " + user_prompt + " [/INST]")
conversation += ("")
if answer_prompt:
conversation += ("Best Option: (")
total_len = 0
indexs = []
if debug:
print(conversation)
tokenized = tokenizer.build_input_ids([conversation],
max_length=1024,
add_special_tokens=True,
truncation=False,
padding=False,
return_tensors='pt',
image=image_tensor,
video=video_tensor,
require_video=True)
if video_tensor is not None:
generation_output = self.generate_caption(
tokenized['input_ids'].unsqueeze(0).to(self.device),
tokenized['attention_mask'].unsqueeze(0).to(self.device),
video_idx = tokenized['video_index'].unsqueeze(0),
video = video_tensor.unsqueeze(0).to(self.device,dtype=torch.bfloat16),
do_sample=False
)
elif image_tensor is not None:
generation_output = self.generate_caption(
tokenized['input_ids'].unsqueeze(0).to(self.device),
tokenized['attention_mask'].unsqueeze(0).to(self.device),
image_idx = tokenized['image_index'].unsqueeze(0),
image = image_tensor.unsqueeze(0).to(self.device,dtype=torch.bfloat16),
do_sample=False
)
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
if debug:
print(response)
return response, chat_history |