File size: 29,973 Bytes
16dc4f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
import io
import logging
import json
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import MSELoss
from transformers.modeling_outputs import (
    CausalLMOutputWithPast,
)
from typing import List, Optional, Tuple, Union
from transformers import LlamaForCausalLM
from transformers.modeling_outputs import (
    CausalLMOutputWithPast,
)

from torch.cuda.amp import autocast as autocast
import torch.nn.functional as F

import numpy as np
from .modeling_vit import  build_vit, MLP, PostProcess

from .modeling_qformer import build_qformer
from .modeling_base import BaseMLLM

from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
logger = logging.getLogger(__name__)

import pycocotools.mask as mask_util

from .modeling_base import VID_TOKEN, IMG_TOKEN

class MultiModalLLM_PT(BaseMLLM):
    def __init__(
        self,
        config,
        _tokenizer=None
    ):
        super().__init__(config=config, _tokenizer=_tokenizer)
        self.use_clip = False
        self.num_frames = 16
        self.num_clips = 1
        self.token_merge_len = 4

        self.per_clip_frames = self.num_frames // self.num_clips
        
        print(self.config)
        self.merge_proj = nn.Linear(
            self.qformer.config.hidden_size*self.token_merge_len, self.config.hidden_size
        )

        if config.build_decoder:
            self.track_embed = MLP(self.config.hidden_size, self.config.hidden_size, 3 * 256, 2, dropout=0)
            self.track_embed_decode2 = MLP(4096, 4096, 4, 2, dropout=0)
            self.temporal_embed = MLP(self.config.hidden_size, self.config.hidden_size, 2, 2, dropout=0.3)
            self.action_embed = MLP(self.config.hidden_size, self.config.hidden_size, 1, 2, dropout=0.3)
            self.postprocess = PostProcess()
            self.track_token = nn.Parameter(torch.randn((1, 1, 4096)))
            self.temporal_token = nn.Parameter(torch.randn((1, 1, 4096)))
            self.box_token = nn.Parameter(torch.randn((1, 1, 4096)))


    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        instruction = None,
        video_idx = None,
        image_idx = None,
        output_boxes = None, # REC
        input_boxes = None, # tracking inputs
        text_input = None,
        video_info = None, 
        temporal_labels = None,
        gt_masks = None,
        sam_images = None,
        size_hw = None,
        path = None,
        mask_path = None,
        tvg_inputs = None,
        tvg_targets = None,
    ):  
        if text_input is not None:
            time_instructions = self.get_clip_time_instruct(text_input)
        else:
            time_instructions = None
        text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, return_visual=False,
                                        video_idx=video_idx, image_idx=image_idx,  instruction = instruction, 
                                        output_boxes = output_boxes, input_boxes=input_boxes, time_instructions = time_instructions)
        outputs = self.lm(
            inputs_embeds=text_embeds,
            attention_mask=attention_mask,
            labels=labels,
            output_hidden_states=True,
            return_dict=True,
        )
        loss = outputs.loss
        logger.info(f'llm loss:{loss}')

        if output_boxes is not None and self.use_bbox_loss:
            last_hidden_states = outputs.hidden_states[-1]
            pred_locs = []
            for idx in range(last_hidden_states.shape[0]):
                loc_positions = ( (input_ids[idx].flatten() == self.tokenizer.box_token) ).nonzero().flatten()
                selected_hidden_states = last_hidden_states[idx][loc_positions]
                pred_locs.append(self.loc_decoder(selected_hidden_states))
            box_loss = self.box_loss(pred_locs, output_boxes)
            logger.info(f'box loss:{box_loss}')
            loss += box_loss
        
        if (gt_masks is not None or input_boxes is not None) and self.use_mask_loss:
            last_hidden_states = outputs.hidden_states[-1]
            pred_masks = []
            sam_losses = []
            box_losses = []
            for idx in range(last_hidden_states.shape[0]):
                loc_positions = ( (input_ids[idx].flatten() == self.tokenizer.track_token) ).nonzero().flatten()
                selected_hidden_states = last_hidden_states[idx][loc_positions]
                embed_sam_boxes = self.track_embed(selected_hidden_states).reshape(1, 3, 256)
                inference_state = self.sam.init_state_images(sam_images, size_hw[idx][0], size_hw[idx][1])
                
                if input_boxes is not None:
                    gt_embeds = self.sam.get_prompt_embeding(inference_state, None, None, False, input_boxes[idx], device = text_embeds.device) 
                else:
                    input_boxes = self.find_boundaries_torch(gt_masks.squeeze(0)[:,:,:1].squeeze(2).cpu()).to(text_embeds.device)
                    gt_embeds = self.sam.get_prompt_embeding(inference_state, None, None, False, input_boxes, device = text_embeds.device) 
                pred_locs = [self.track_embed_decode2((selected_hidden_states))[0]]
                target_boxes = [input_boxes[idx]]

                src_boxes = pred_locs
                loss_bbox = self.box_loss2(src_boxes, target_boxes)

                loss_bbox = self.masked_loss(loss_bbox, 0)
                box_losses.append(loss_bbox)
                sam_losses.append( F.l1_loss(embed_sam_boxes, gt_embeds))
            
            logger.info(f'refering sam loss:{sam_losses}')
            sam_losses = torch.stack(sam_losses)
            box_losses = torch.stack(box_losses)
            loss += torch.mean(sam_losses)
            loss += torch.mean(box_losses)
        
        if tvg_inputs is not None and self.use_temporal_loss:
            last_hidden_states = outputs.hidden_states[-1]                                               # [bsz,1024, 4096]
            last_hidden_states = last_hidden_states.view(-1, last_hidden_states.size(-1))                # [bsz*1024, 4096]
            loc_positions = (input_ids.flatten()==self.tokenizer.temp_token).nonzero().flatten()         # [bsz]
            prompt_token = last_hidden_states[loc_positions]
            prompt_token = prompt_token.view(input_ids.shape[0], -1 ,prompt_token.shape[-1])   # [bsz, 1, 4096]

        
            cg_outputs = self.cg_model(**tvg_inputs, targets=tvg_targets, prompt_token=prompt_token)
            loss_dict = self.cg_criterion(cg_outputs, tvg_targets)
            weight_dict = self.cg_criterion.weight_dict
            tvg_loss = 0.05*sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict)
            logger.info(f'tvg_loss:{tvg_loss}')
            loss += tvg_loss


        logger.info(f'all loss:{loss}')
        return CausalLMOutputWithPast(
            loss=loss,
            logits=outputs.logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def pad_text_embeds(
        self,
        input_ids: torch.LongTensor = None,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        image_idx = None,
        video_idx = None,
        return_visual: bool = False,
        instruction = None,
        output_boxes = None, # boxes for REC
        input_boxes = None, # boxes for tracking
        time_instructions = None,
    ):
        text_embeds = self.lm.get_input_embeddings()(input_ids.long()).detach()
        if input_boxes is not None:
            input_boxes = input_boxes[0].to(dtype=text_embeds.dtype)
            
            boxes_emb = self.loc_encoder(input_boxes)
            boxes_emb = boxes_emb.view(-1, 4096)
            
            text_embeds[input_ids == torch.full_like(input_ids, self.tokenizer.track_box_token)] = text_embeds[input_ids == torch.full_like(input_ids, self.tokenizer.track_box_token)] * 0 + boxes_emb.to(text_embeds.device)
            logger.info(f'embedings:{text_embeds[input_ids == torch.full_like(input_ids, self.tokenizer.track_box_token)].shape}')
        visual = None
        visual_idx = None
     
        if image is not None:

            B, T, C, H, W = image.shape
            image = image.permute(0, 2, 1, 3, 4)

            instruction = None
            
            prompt_image_embeds = self.encode_vision(image, instruction)

            visual = prompt_image_embeds

            prompt_image_embeds = self.project_up(prompt_image_embeds) # 768 -> 4096
            prompt_image_embeds = prompt_image_embeds.view(-1, prompt_image_embeds.shape[-1])

            visual_idx = image_idx

            prompt_image_embeds = prompt_image_embeds.to(dtype=text_embeds.dtype)

            text_embeds[image_idx == 1] = torch.zeros_like(text_embeds[image_idx == 1]) + prompt_image_embeds.to(text_embeds.device)


        elif video is not None:
            if len(video.shape) == 5:
                B, T, C, H, W = video.shape
                N = 1
                if self.use_clip:
                    video = video.reshape(B*self.num_clips, T//self.num_clips, C, H, W)  # [16, 8, 3, 224, 224]
            else:
                B, N, T, C, H, W = video.shape

            video = video.permute(0,2,1,3,4)      # 


            prompt_video_embeds = self.encode_vision(video, instruction=time_instructions)  # [2, 96, 768]
            if self.use_clip:
                prompt_video_embeds = prompt_video_embeds.reshape(B,-1,prompt_video_embeds.shape[-1])     # [2,8*96,768]
                batch_size, img_len, token_dim = prompt_video_embeds.shape
                prompt_video_embeds = prompt_video_embeds.view(batch_size, img_len // self.token_merge_len, self.token_merge_len * token_dim)  # [B, 768//4, 4*768] = [2, 192, 3072]
                prompt_video_embeds = self.merge_proj(prompt_video_embeds)   # [2, 192, 4096]
                prompt_video_embeds = prompt_video_embeds.view(-1, prompt_video_embeds.shape[-1]) # [2*192, 4096]
        
            else:
                prompt_video_embeds = self.project_up(prompt_video_embeds) # [2, 96, 4096]

            prompt_video_embeds = prompt_video_embeds.view(-1, prompt_video_embeds.shape[-1]) 
            visual_idx = video_idx
            
         
            text_embeds[video_idx == 1] = torch.zeros_like(text_embeds[video_idx == 1]) + prompt_video_embeds.to(text_embeds.device).to(text_embeds.dtype)
        
        else:
            logger.warn(f"don't get visual input, input_ids: {input_ids}")    
        

        for idx, text_embed in enumerate(text_embeds): 
            if text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.box_token].shape[0] != 0:
                text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.box_token] = torch.zeros_like(text_embeds[idx][input_ids[idx] == self.tokenizer.box_token]) + torch.cat([self.box_token.squeeze(0)] * (text_embeds[idx][input_ids[idx] == self.tokenizer.box_token]).shape[0]).to(text_embeds.dtype)
            if text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.temp_token].shape[0] != 0:            
                text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.temp_token] = torch.zeros_like(text_embeds[idx][input_ids[idx] == self.tokenizer.temp_token]) + self.temporal_token
            if text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.track_token].shape[0] != 0:            
                text_embeds[idx][input_ids[idx].flatten() == self.tokenizer.track_token] = torch.zeros_like(text_embeds[idx][input_ids[idx] == self.tokenizer.track_token]) + self.track_token
             
        if return_visual:
            return text_embeds, visual, visual_idx
        
        return text_embeds

 
    
    def temporal_decode(self, temporal_embedding):
        pred_sted = self.temporal_embed(temporal_embedding)
        pred_actioness = self.action_embed(temporal_embedding)
        return pred_sted, pred_actioness

  
    def box_loss2(self, src_boxes, target_boxes):
        src_boxes = torch.cat(src_boxes)
        target_boxes = torch.cat(target_boxes)

        loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
        loss_bbox = self.masked_loss(loss_bbox, 0)
        mask = (src_boxes[2:] >= src_boxes[:2]).all(-1)
        src_boxes = src_boxes[mask]
        target_boxes = target_boxes[mask]

        return loss_bbox 

    def box_loss(self, src_boxes, target_boxes):
        src_boxes = torch.cat(src_boxes)
        target_boxes = torch.cat(target_boxes)

        loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none')
        loss_bbox = self.masked_loss(loss_bbox, 0)
        mask = (src_boxes[:, 2:] >= src_boxes[ :, :2]).all(-1)
        src_boxes = src_boxes[mask]
        target_boxes = target_boxes[mask]

        if src_boxes.shape[0] > 0:
            loss_giou = 1 - torch.diag(generalized_box_iou(
                src_boxes,
                target_boxes))
            loss_giou = self.masked_loss(loss_giou, 0)
        else:
            loss_giou = torch.tensor(2, dtype=src_boxes.dtype)
        iou, union = box_iou(src_boxes, target_boxes)
        
        return loss_bbox * 2 + loss_giou / 5
    
    def find_boundaries_torch(self, mask):

        from skimage.segmentation import find_boundaries
        mask_np = mask.to(torch.bool).numpy()
        boundaries = find_boundaries(mask_np, mode='outer')
        boundary_points = np.argwhere(boundaries)
        if boundary_points.size == 0:
            return torch.tensor([-1, -1, -1, -1], dtype = torch.bfloat16)
        h0, w0 = boundary_points.min(axis=0)
        h1, w1 = boundary_points.max(axis=0)
        return torch.tensor([w0 / mask.shape[1], h0 / mask.shape[0],  w1 / mask.shape[1], h1 / mask.shape[0]], dtype = torch.bfloat16)


    def sam_loss(self, sam_outputs, gt_masks):
        bound1 = self.find_boundaries_torch(gt_masks[:,:,:1].squeeze(2).cpu())
        bound2 = self.find_boundaries_torch(sam_outputs[:,:,:1].squeeze(2).cpu()) 

        lossl1 = F.l1_loss(bound1, bound2, reduction='none')
        lossl1 = self.masked_loss(lossl1, 0)

        loss_iou = self.iou_loss(sam_outputs, gt_masks)
        loss_dice = self.dice_loss(sam_outputs, gt_masks)

        # print(f'mask loss:{loss_iou,  loss_dice}')
        return loss_iou + loss_dice + lossl1
    
    def masked_loss(self, loss, n):
        mask = torch.ones_like(loss)
        # mask[-n:] = 1e-10
        loss = (loss*mask).sum()/(mask.sum())
        return loss

    def encode_vision(
        self,
        image,
        instruction
    ):
        device = image.device
        B = image.shape[0]
        T = image.shape[2]
        use_image = True if T == 1 else False
        image_embeds = self.vision_encoder(image, use_image=use_image)
        C = image_embeds.shape[-1]
        image_embeds = image_embeds.reshape(B, -1, C)
        image_embeds = self.vision_layernorm(image_embeds).to(device)  # [B, T*L, C]
        
        image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(device)
        if self.extra_num_query_token > 0:
            query_tokens = torch.cat([self.query_tokens, self.extra_query_tokens], dim=1)
        query_tokens = query_tokens.expand(image_embeds.shape[0], -1, -1)
        if instruction is not None:
            text_Qformer = self.qformer_tokenizer(
                instruction,
                padding='longest',
                truncation=True,
                max_length=512,
                return_tensors="pt",
            ).to(image_embeds.device)
            query_atts = torch.ones(query_tokens.size()[:-1], dtype=torch.long).to(image_embeds.device)
            Qformer_atts = torch.cat([query_atts, text_Qformer.attention_mask], dim=1)
            query_output = self.qformer.bert(
                text_Qformer.input_ids,
                attention_mask=Qformer_atts,
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )
        else:
            query_output = self.qformer.bert(
                query_embeds=query_tokens,
                encoder_hidden_states=image_embeds,
                encoder_attention_mask=image_atts,
                return_dict=True,
            )
        
        return query_output.last_hidden_state[:, :query_tokens.size(1), :]

    def generate_caption(
        self,
        input_ids,
        attention_mask,
        image_idx = None,
        video_idx = None,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        num_beams=1,
        max_new_tokens=200,
        do_sample=True,
        top_p=0.9,
        top_k=None,
        temperature=1.0,
        length_penalty=1,
        repetition_penalty=1.0,
    ):
        text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, image_idx=image_idx, video_idx=video_idx)
        outputs = self.lm.generate(
            inputs_embeds=text_embeds,
            attention_mask=attention_mask,
            num_beams=num_beams,
            max_new_tokens=max_new_tokens,
            do_sample=do_sample,
            min_length=1,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            length_penalty=length_penalty,
            repetition_penalty=repetition_penalty,
        )

        return outputs

    def generate_caption_bbox(
        self,
        input_ids,
        attention_mask,
        labels,
        image_idx = None,
        video_idx = None,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        num_beams=1,
        max_new_tokens=200,
        do_sample=True,
        top_p=0.9,
        top_k=None,
        temperature=0.9,
        length_penalty=1,
        repetition_penalty=1.0,
    ):
        text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, image_idx=image_idx, video_idx=video_idx)
        outputs = self.lm.generate(
            inputs_embeds=text_embeds,
            attention_mask=attention_mask,
            num_beams=num_beams,
            max_new_tokens=max_new_tokens,
            do_sample=do_sample,
            min_length=1,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            length_penalty=length_penalty,
            repetition_penalty=repetition_penalty,
        )
        decoded_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
        # torch.save({'text':decoded_text, 'output':{outputs}}, 'tmp.pth')
        # print(decoded_text)
        return outputs
    
    def generate_temporal(self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        labels: Optional[torch.LongTensor] = None,
        image: Optional[torch.Tensor] = None,
        video: Optional[torch.Tensor] = None,
        instruction = None,
        video_idx = None,
        image_idx = None,
        boxes = None,
        text_input = None,
        video_info = None, 
        temporal_labels = None):

        if text_input is not None:
            time_instructions = self.get_clip_time_instruct(text_input)
        else:
            time_instructions = None
        text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, return_visual=False,
                                        video_idx=video_idx, image_idx=image_idx,  instruction = instruction, 
                                        boxes = boxes, time_instructions = time_instructions)
        
        # TODO
        outputs = self.lm(
            inputs_embeds=text_embeds,
            attention_mask=attention_mask,
            labels=labels,
            output_hidden_states=True,
            return_dict=True,
        )

        if temporal_labels is not None:
            start_sec = temporal_labels["start_sec"]
            end_sec = temporal_labels["end_sec"]
            fps = video_info['fps']
            frame_indices = video_info['frame_indices']

            last_hidden_states = outputs.hidden_states[-1]                                   # [2,1024, 4096]
            last_hidden_states = last_hidden_states.view(-1, last_hidden_states.size(-1))    # [2048, 4096]
            loc_positions = (input_ids.flatten()==self.tokenizer.temp_place_ids).nonzero().flatten()   #
            selected_hidden_states = last_hidden_states[loc_positions]
            selected_hidden_states = selected_hidden_states.view(input_ids.shape[0], -1 ,selected_hidden_states.shape[-1]) # [2, 64, 4096]

            # just for debug
            
            # vis_embed = vis_embed[:,:64,:]

            pred_sted, pred_actionness = self.temporal_decode(selected_hidden_states) # [2,64,2]  [2,64,1]

            pred_sted = self.postprocess(pred_sted, frame_indices)
            pred_sec_s = pred_sted[0][0] / fps[0][0].item()
            pred_sec_e = pred_sted[0][1] / fps[0][0].item()

            output_file = "predictions2.jsonl"
            prediction = {"pred_sec_s": round(pred_sec_s, 1), "pred_sec_e": round(pred_sec_e, 1), "start_sec":float(start_sec[0]), "end_sec": float(end_sec[0])}

            with open(output_file, 'a') as f:
                json.dump(prediction, f)
                f.write('\n')

            return outputs

    def generate_seg(self, input_ids, attention_mask, labels, image, image_idx, video, video_idx, input_boxes, size_hw, sam_images):
        device = input_ids.device
        prompt = input_ids
        l_prompt = len(input_ids)
        temperature = 1e-5
        max_new_tokens = 20
        guide_w = 5
        stop_str = '</s>'
        bbox = []
        output_ids = list(input_ids[0])
        text_embeds = self.pad_text_embeds(input_ids=input_ids, image=image, video=video, image_idx=image_idx, video_idx=video_idx, return_visual=False, 
                                        instruction = None, output_boxes=None, input_boxes=input_boxes)
        for i in range(max_new_tokens):
            if i == 0:
                outputs = self.lm(
                        inputs_embeds=text_embeds,
                        attention_mask=attention_mask,
                        output_hidden_states=True,
                        return_dict=True,
                    )
                logits = outputs.logits
                past_key_values = outputs.past_key_values
            else:
                attention_mask = torch.ones(1, past_key_values[0][0].shape[-2] + 1, device=device)
                last_text_embeds = self.lm.get_input_embeddings()(torch.tensor(output_ids[-1], device=device).long()).detach().unsqueeze(0)
                last_text_embeds = last_text_embeds.unsqueeze(0)
                
                out = self.lm(
                    input_ids=None,
                    use_cache=True,
                    attention_mask=attention_mask,
                    output_hidden_states=True,
                    inputs_embeds=last_text_embeds,
                    past_key_values=past_key_values,
                )
                logits = out.logits
                past_key_values = out.past_key_values
            if logits is not None:
                last_token_logits = logits[0][-1]
                if temperature < 1e-4:
                    token = int(torch.argmax(last_token_logits))
                else:
                    probs = torch.softmax(last_token_logits / temperature, dim=-1)
                    token = int(torch.multinomial(probs, num_samples=1))
                output_ids.append(token)
            ret = self.tokenizer.decode(token)
            if ret == '<box_begin>':
                attention_mask = torch.ones(1, past_key_values[0][0].shape[-2] + 1, device=device)
                bbox_embeds = self.box_token.bfloat16()
                out = self.lm(
                    inputs_embeds=bbox_embeds,
                    use_cache=True,
                    attention_mask=attention_mask,
                    output_hidden_states=True,
                    past_key_values=past_key_values
                )
                last_hidden_states = out.hidden_states[-1]
                selected_hidden_states = last_hidden_states[0][0]
                bbox.append(self.loc_decoder(selected_hidden_states))
                last_token_logits = logits[0][-1]
                if temperature < 1e-4:
                    token = int(torch.argmax(last_token_logits))
                else:
                    probs = torch.softmax(last_token_logits / temperature, dim=-1)
                    token = int(torch.multinomial(probs, num_samples=1))
            if ret == '<track_begin>':
                attention_mask = torch.ones(1, past_key_values[0][0].shape[-2] + 1, device=device)
                tracking_embeds = self.track_token
                out = self.lm(
                    inputs_embeds=tracking_embeds,
                    use_cache=True,
                    attention_mask=attention_mask,
                    output_hidden_states=True,
                    past_key_values=past_key_values
                )
                last_hidden_states = out.hidden_states[-1]
                selected_hidden_states = last_hidden_states[0][0].to(dtype = torch.bfloat16)
                
                embed_sam_boxes = self.track_embed(selected_hidden_states).reshape(1, 3, 256)
                
                inference_state = self.sam.init_state_images(sam_images, size_hw[0][0], size_hw[0][1])
                gt_embeds = self.sam.get_prompt_embeding(inference_state, None, None, False, input_boxes[0].cuda(), device = text_embeds.device) 
                ann_frame_idx = 0
                ann_obj_id = 0
                box = np.array([0, 0, 0, 0], dtype=np.float32)
                _, out_obj_ids, out_mask_logits = self.sam.add_new_box_embeding(
                    inference_state=inference_state,
                    frame_idx=ann_frame_idx,
                    obj_id=ann_obj_id,
                    box=box,
                    box_embeding=embed_sam_boxes,
                )
                video_segments = {}  # video_segments contains the per-frame segmentation results
                for out_frame_idx, out_obj_ids, out_mask_logits in self.sam.propagate_in_video(inference_state):
                    video_segments[out_frame_idx] = {
                        out_obj_id: (out_mask_logits[i] > 0.0)
                        for i, out_obj_id in enumerate(out_obj_ids)
                    }
                video_segments = [video_segments[tt][0] for tt in video_segments]
                # bbox = model.find_boundaries_torch(video_segments[0].squeeze(0).cpu())
                # return ret, [], video_segments

            if (ret == '</s>'):
                break
        ret = self.tokenizer.decode(output_ids)
        del past_key_values
        return ret, bbox, video_segments
    
    def generate_answer(self, tokenizer, instruction, msg, user_prompt, media_type="video",video_tensor=None, image_tensor=None, answer_prompt=None, chat_history=[],return_history=False, debug=False, generation_config={}):
        input_ids, attention_masks, labels = [], [], []

        conversation = ""
        if instruction:
            conversation += instruction
        conversation += (
                    "[INST]" + " "
                )

        if media_type == 'image':
            conversation +=( "<Image>" + IMG_TOKEN + "</Image>")
        else:
            conversation += ("<Video>" + VID_TOKEN + "</Video>")

        conversation += ( msg.rstrip() + "[/INST]")

        for q,a in chat_history:
            conversation += (" [INST] " + q + " [/INST]")
            conversation += (a + "</s>")
            
        conversation += (" [INST] " + user_prompt + " [/INST]")
        conversation += ("")
        if answer_prompt:
            conversation += ("Best Option: (")
        total_len = 0
        indexs = []
        if debug:
            print(conversation)

        tokenized = tokenizer.build_input_ids([conversation], 
                                          max_length=1024, 
                                          add_special_tokens=True, 
                                          truncation=False, 
                                          padding=False, 
                                          return_tensors='pt', 
                                          image=image_tensor,
                                          video=video_tensor,
                                          require_video=True)
        if video_tensor is not None:
            generation_output = self.generate_caption(
                    tokenized['input_ids'].unsqueeze(0).to(self.device), 
                    tokenized['attention_mask'].unsqueeze(0).to(self.device), 
                    video_idx = tokenized['video_index'].unsqueeze(0),
                    video = video_tensor.unsqueeze(0).to(self.device,dtype=torch.bfloat16), 
                    do_sample=False
                    )
        elif image_tensor is not None:
            generation_output = self.generate_caption(
                    tokenized['input_ids'].unsqueeze(0).to(self.device), 
                    tokenized['attention_mask'].unsqueeze(0).to(self.device), 
                    image_idx = tokenized['image_index'].unsqueeze(0),
                    image = image_tensor.unsqueeze(0).to(self.device,dtype=torch.bfloat16), 
                    do_sample=False
                    )
        response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
        if debug:
            print(response)
        return response, chat_history