VideoChat-TPO / modeling_vit.py
ynhe
init
16dc4f2
import logging
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from functools import partial
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
logger = logging.getLogger(__name__)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 400, 'input_size': (3, 224, 224), 'pool_size': None,
'crop_pct': .9, 'interpolation': 'bicubic',
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
**kwargs
}
class MLP(nn.Module):
"""Very simple multi-layer perceptron (also called FFN)"""
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, dropout=0):
super().__init__()
self.num_layers = num_layers
h = [hidden_dim] * (num_layers - 1)
self.layers = nn.ModuleList(
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
)
self.dropout = dropout
if dropout:
self.dropout = nn.Dropout(dropout)
def forward(self, x):
for i, layer in enumerate(self.layers):
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
if self.dropout and i < self.num_layers:
x = self.dropout(x)
return x
class PostProcess(nn.Module):
""" This module converts the model's output into the format expected by the coco api"""
@torch.no_grad()
def forward(self, out_sted, frames_id):
"""Perform the computation for inference evaluation
"""
# import pdb; pdb.set_trace()
b, t, _ = out_sted.shape
device = out_sted.device
temp_prob_map = torch.zeros(b,t,t).to(device)
inf = -1e32
for i_b in range(len(frames_id)):
duration = len(frames_id[0])
sted_prob = (torch.ones(t, t) * inf).tril(0).to(device)
sted_prob[duration:,:] = inf
sted_prob[:,duration:] = inf
temp_prob_map[i_b,:,:] = sted_prob
temp_prob_map += F.log_softmax(out_sted[:, :, 0], dim=1).unsqueeze(2) + \
F.log_softmax(out_sted[:, :, 1], dim=1).unsqueeze(1)
pred_steds = []
for i_b in range(b):
prob_map = temp_prob_map[i_b] # [T * T]
frame_id_seq = frames_id[i_b]
prob_seq = prob_map.flatten(0)
max_tstamp = prob_seq.max(dim=0)[1].item()
start_idx = max_tstamp // t
end_idx = max_tstamp % t
pred_sted = [frame_id_seq[start_idx], frame_id_seq[end_idx]+1]
pred_steds.append(pred_sted)
return pred_steds
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
def extra_repr(self) -> str:
return 'p={}'.format(self.drop_prob)
class Mlp(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class Attention(nn.Module):
def __init__(
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
proj_drop=0., attn_head_dim=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
if attn_head_dim is not None:
head_dim = attn_head_dim
all_head_dim = head_dim * self.num_heads
self.scale = qk_scale or head_dim ** -0.5
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
if qkv_bias:
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
else:
self.q_bias = None
self.v_bias = None
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(all_head_dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
def forward(self, x):
B, N, C = x.shape
qkv_bias = None
if self.q_bias is not None:
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
x = self.proj(x)
x = self.proj_drop(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
attn_head_dim=None):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim)
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if init_values > 0:
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
else:
self.gamma_1, self.gamma_2 = None, None
def forward(self, x):
if self.gamma_1 is None:
x = x + self.drop_path(self.attn(self.norm1(x)))
x = x + self.drop_path(self.mlp(self.norm2(x)))
else:
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
return x
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.tubelet_size = int(tubelet_size)
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size)
self.img_size = img_size
self.patch_size = patch_size
self.num_patches = num_patches
self.proj = nn.Conv3d(
in_channels=in_chans, out_channels=embed_dim,
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
stride=(self.tubelet_size, patch_size[0], patch_size[1])
)
logger.info(f'Num of patches: {num_patches}')
def forward(self, x, **kwargs):
B, C, T, H, W = x.shape
# FIXME look at relaxing size constraints
# assert H == self.img_size[0] and W == self.img_size[1], \
# f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2)
return x
# sin-cos position encoding
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
def get_sinusoid_encoding_table(n_position, d_hid, ckpt_num_frame=-1, cur_frame=12):
''' Sinusoid position encoding table '''
# TODO: make it with torch instead of numpy
def get_position_angle_vec(position):
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
if ckpt_num_frame != -1 and ckpt_num_frame != cur_frame:
logger.info(f"Interpolate position embedding")
logger.info(f"Testing frame: {cur_frame}")
logger.info(f"Checkpoint frame: {ckpt_num_frame}")
T = ckpt_num_frame # checkpoint frame
new_T = cur_frame # testing frame
n_position = n_position // new_T * T # generate checkpoint position embedding
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
# interpolate
P = int((n_position // T) ** 0.5)
C = d_hid
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW, C, T
sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear')
sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C
sinusoid_table = sinusoid_table.flatten(1, 3)
return sinusoid_table
else:
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
def get_sinusoid_encoding_table2(n_position=784, d_hid=1024, cur_frame=8, ckpt_num_frame=4, pre_n_position=784):
''' Sinusoid position encoding table '''
# TODO: make it with torch instead of numpy
def get_position_angle_vec(position):
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
# generate checkpoint position embedding
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)])
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
print(f"n_position: {n_position}")
print(f"pre_n_position: {pre_n_position}")
if n_position != pre_n_position:
T = ckpt_num_frame # checkpoint frame
P = 14 # checkpoint size
C = d_hid
new_P = int((n_position // cur_frame) ** 0.5) # testing size
print(f'Pretraining uses 14x14, but current version is {new_P}x{new_P}')
print(f'Interpolate the position embedding')
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
sinusoid_table = sinusoid_table.reshape(-1, P, P, C).permute(0, 3, 1, 2)
sinusoid_table = torch.nn.functional.interpolate(
sinusoid_table, size=(new_P, new_P), mode='bicubic', align_corners=False)
# BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape(-1, T, new_P, new_P, C)
sinusoid_table = sinusoid_table.flatten(1, 3) # B, THW, C
if cur_frame != ckpt_num_frame:
print(f'Pretraining uses 4 frames, but current frame is {cur_frame}')
print(f'Interpolate the position embedding')
T = ckpt_num_frame # checkpoint frame
new_T = cur_frame # testing frame
# interpolate
P = int((n_position // cur_frame) ** 0.5) # testing size
C = d_hid
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW, C, T
sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear')
sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C
sinusoid_table = sinusoid_table.flatten(1, 3) # B, THW, C
return sinusoid_table
class PretrainVisionTransformerEncoder(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, num_frames=8, tubelet_size=1,
use_learnable_pos_emb=False,
use_checkpoint=False, checkpoint_num=0,
ckpt_num_frame=-1, with_ln=True, return_index=-1
):
super().__init__()
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
num_frames=num_frames, tubelet_size=tubelet_size
)
num_patches = self.patch_embed.num_patches
self.depth = depth + return_index + 1
self.use_checkpoint = use_checkpoint
self.checkpoint_num = checkpoint_num
logger.info(f"Use checkpoint: {use_checkpoint}")
logger.info(f"Checkpoint number: {checkpoint_num}")
logger.info(f"Real runing depth: {self.depth}")
# TODO: Add the cls token
if use_learnable_pos_emb:
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
self.img_pos_embed = nn.Parameter(torch.zeros(1, num_patches//(num_frames//tubelet_size) + 1, embed_dim))
else:
# sine-cosine positional embeddings
if img_size != 224:
self.pos_embed = get_sinusoid_encoding_table2(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size)
self.img_pos_embed = get_sinusoid_encoding_table2(num_patches//(num_frames//tubelet_size), embed_dim, cur_frame=1, ckpt_num_frame=1, pre_n_position=14*14)
else:
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size)
self.img_pos_embed = get_sinusoid_encoding_table(num_patches//(num_frames//tubelet_size), embed_dim)
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
self.blocks = nn.ModuleList([
Block(
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
init_values=init_values)
for i in range(self.depth)])
if with_ln:
self.norm = norm_layer(embed_dim)
else:
self.norm = nn.Identity()
if use_learnable_pos_emb:
trunc_normal_(self.pos_embed, std=.02)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token'}
def forward_features(self, x, use_image=False):
x = self.patch_embed(x)
if use_image:
x = x + self.img_pos_embed.type_as(x).to(x.device).clone().detach()
else:
x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
B, _, C = x.shape
x_vis = x
for idx, blk in enumerate(self.blocks):
if self.use_checkpoint and idx < self.checkpoint_num:
x_vis = checkpoint.checkpoint(blk, x_vis)
else:
x_vis = blk(x_vis)
# with ln ot not
x_vis = self.norm(x_vis)
return x_vis
def forward(self, x, use_image=False):
x_vis = self.forward_features(x, use_image)
return x_vis
class PretrainVisionTransformer(nn.Module):
""" Vision Transformer with support for patch or hybrid CNN input stage
"""
def __init__(self,
img_size=224,
patch_size=16,
encoder_in_chans=3,
encoder_embed_dim=768,
encoder_depth=12,
encoder_num_heads=12,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
init_values=0.,
use_learnable_pos_emb=False,
num_frames=8,
tubelet_size=1,
use_checkpoint=False,
checkpoint_num=0,
ckpt_num_frame=4, # the pretrained model uses 4 frames
return_index=-1,
with_ln=False
):
super().__init__()
self.encoder = PretrainVisionTransformerEncoder(
img_size=img_size,
patch_size=patch_size,
in_chans=encoder_in_chans,
embed_dim=encoder_embed_dim,
depth=encoder_depth,
num_heads=encoder_num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop_rate=drop_rate,
attn_drop_rate=attn_drop_rate,
drop_path_rate=drop_path_rate,
norm_layer=norm_layer,
init_values=init_values,
num_frames=num_frames,
tubelet_size=tubelet_size,
use_learnable_pos_emb=use_learnable_pos_emb,
use_checkpoint=use_checkpoint,
checkpoint_num=checkpoint_num,
ckpt_num_frame=ckpt_num_frame,
with_ln=with_ln,
return_index=return_index
)
logger.info(f'With LN: {with_ln}')
logger.info(f'Total {encoder_depth} layer')
logger.info(f'Return {encoder_depth+return_index+1}-th layer')
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
return {'pos_embed', 'cls_token', 'clip_pos_embed'}
def forward(self, x, use_image=False):
T = x.shape[2]
x_vis = self.encoder(x, use_image) # [B, N_vis, C_e]
B, TL, C = x_vis.shape
x_vis = x_vis.view(B, T, TL // T, C)
return x_vis
def build_vit(config):
model = PretrainVisionTransformer(
img_size=config.vision_encoder.img_size,
patch_size=config.vision_encoder.patch_size,
encoder_embed_dim=config.vision_encoder.encoder_embed_dim,
encoder_depth=config.vision_encoder.encoder_depth,
encoder_num_heads=config.vision_encoder.encoder_num_heads,
drop_path_rate=config.vision_encoder.drop_path_rate,
num_frames=config.vision_encoder.num_frames,
tubelet_size=config.vision_encoder.tubelet_size,
use_checkpoint=config.vision_encoder.use_checkpoint,
checkpoint_num=config.vision_encoder.checkpoint_num,
return_index=config.vision_encoder.get('return_index', -1),
with_ln=config.vision_encoder.get('with_ln', False),
)
model.default_cfg = _cfg()
if config.vision_encoder.pretrained:
logger.info(f"Loading pretrained weights from {config.vision_encoder.pretrained}")
state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu')
model.load_state_dict(state_dict, strict=False)
else:
logger.info("No pretrained weights!!!")
return model