|
import logging |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
from functools import partial |
|
|
|
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ |
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def _cfg(url='', **kwargs): |
|
return { |
|
'url': url, |
|
'num_classes': 400, 'input_size': (3, 224, 224), 'pool_size': None, |
|
'crop_pct': .9, 'interpolation': 'bicubic', |
|
'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5), |
|
**kwargs |
|
} |
|
|
|
class MLP(nn.Module): |
|
"""Very simple multi-layer perceptron (also called FFN)""" |
|
|
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers, dropout=0): |
|
super().__init__() |
|
self.num_layers = num_layers |
|
h = [hidden_dim] * (num_layers - 1) |
|
self.layers = nn.ModuleList( |
|
nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]) |
|
) |
|
self.dropout = dropout |
|
if dropout: |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.layers): |
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
if self.dropout and i < self.num_layers: |
|
x = self.dropout(x) |
|
return x |
|
|
|
class PostProcess(nn.Module): |
|
""" This module converts the model's output into the format expected by the coco api""" |
|
|
|
@torch.no_grad() |
|
def forward(self, out_sted, frames_id): |
|
"""Perform the computation for inference evaluation |
|
""" |
|
|
|
|
|
b, t, _ = out_sted.shape |
|
device = out_sted.device |
|
temp_prob_map = torch.zeros(b,t,t).to(device) |
|
inf = -1e32 |
|
for i_b in range(len(frames_id)): |
|
duration = len(frames_id[0]) |
|
sted_prob = (torch.ones(t, t) * inf).tril(0).to(device) |
|
sted_prob[duration:,:] = inf |
|
sted_prob[:,duration:] = inf |
|
temp_prob_map[i_b,:,:] = sted_prob |
|
|
|
temp_prob_map += F.log_softmax(out_sted[:, :, 0], dim=1).unsqueeze(2) + \ |
|
F.log_softmax(out_sted[:, :, 1], dim=1).unsqueeze(1) |
|
|
|
pred_steds = [] |
|
for i_b in range(b): |
|
prob_map = temp_prob_map[i_b] |
|
frame_id_seq = frames_id[i_b] |
|
prob_seq = prob_map.flatten(0) |
|
max_tstamp = prob_seq.max(dim=0)[1].item() |
|
start_idx = max_tstamp // t |
|
end_idx = max_tstamp % t |
|
pred_sted = [frame_id_seq[start_idx], frame_id_seq[end_idx]+1] |
|
pred_steds.append(pred_sted) |
|
|
|
return pred_steds |
|
|
|
class DropPath(nn.Module): |
|
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). |
|
""" |
|
def __init__(self, drop_prob=None): |
|
super(DropPath, self).__init__() |
|
self.drop_prob = drop_prob |
|
|
|
def forward(self, x): |
|
return drop_path(x, self.drop_prob, self.training) |
|
|
|
def extra_repr(self) -> str: |
|
return 'p={}'.format(self.drop_prob) |
|
|
|
|
|
class Mlp(nn.Module): |
|
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__( |
|
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., |
|
proj_drop=0., attn_head_dim=None): |
|
super().__init__() |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
if attn_head_dim is not None: |
|
head_dim = attn_head_dim |
|
all_head_dim = head_dim * self.num_heads |
|
self.scale = qk_scale or head_dim ** -0.5 |
|
|
|
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) |
|
if qkv_bias: |
|
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) |
|
else: |
|
self.q_bias = None |
|
self.v_bias = None |
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(all_head_dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x): |
|
B, N, C = x.shape |
|
qkv_bias = None |
|
if self.q_bias is not None: |
|
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) |
|
|
|
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) |
|
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class Block(nn.Module): |
|
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., |
|
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, |
|
attn_head_dim=None): |
|
super().__init__() |
|
self.norm1 = norm_layer(dim) |
|
self.attn = Attention( |
|
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) |
|
|
|
if init_values > 0: |
|
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) |
|
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) |
|
else: |
|
self.gamma_1, self.gamma_2 = None, None |
|
|
|
def forward(self, x): |
|
if self.gamma_1 is None: |
|
x = x + self.drop_path(self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
else: |
|
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x))) |
|
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) |
|
return x |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2): |
|
super().__init__() |
|
img_size = to_2tuple(img_size) |
|
patch_size = to_2tuple(patch_size) |
|
self.tubelet_size = int(tubelet_size) |
|
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size) |
|
self.img_size = img_size |
|
self.patch_size = patch_size |
|
self.num_patches = num_patches |
|
self.proj = nn.Conv3d( |
|
in_channels=in_chans, out_channels=embed_dim, |
|
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]), |
|
stride=(self.tubelet_size, patch_size[0], patch_size[1]) |
|
) |
|
logger.info(f'Num of patches: {num_patches}') |
|
|
|
def forward(self, x, **kwargs): |
|
B, C, T, H, W = x.shape |
|
|
|
|
|
|
|
x = self.proj(x).flatten(2).transpose(1, 2) |
|
return x |
|
|
|
|
|
|
|
def get_sinusoid_encoding_table(n_position, d_hid, ckpt_num_frame=-1, cur_frame=12): |
|
''' Sinusoid position encoding table ''' |
|
|
|
def get_position_angle_vec(position): |
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] |
|
|
|
if ckpt_num_frame != -1 and ckpt_num_frame != cur_frame: |
|
logger.info(f"Interpolate position embedding") |
|
logger.info(f"Testing frame: {cur_frame}") |
|
logger.info(f"Checkpoint frame: {ckpt_num_frame}") |
|
|
|
T = ckpt_num_frame |
|
new_T = cur_frame |
|
n_position = n_position // new_T * T |
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) |
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) |
|
|
|
P = int((n_position // T) ** 0.5) |
|
C = d_hid |
|
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) |
|
sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) |
|
sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear') |
|
sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) |
|
sinusoid_table = sinusoid_table.flatten(1, 3) |
|
return sinusoid_table |
|
else: |
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) |
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) |
|
|
|
|
|
def get_sinusoid_encoding_table2(n_position=784, d_hid=1024, cur_frame=8, ckpt_num_frame=4, pre_n_position=784): |
|
''' Sinusoid position encoding table ''' |
|
|
|
def get_position_angle_vec(position): |
|
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] |
|
|
|
|
|
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)]) |
|
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) |
|
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) |
|
sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0) |
|
|
|
print(f"n_position: {n_position}") |
|
print(f"pre_n_position: {pre_n_position}") |
|
|
|
if n_position != pre_n_position: |
|
T = ckpt_num_frame |
|
P = 14 |
|
C = d_hid |
|
new_P = int((n_position // cur_frame) ** 0.5) |
|
print(f'Pretraining uses 14x14, but current version is {new_P}x{new_P}') |
|
print(f'Interpolate the position embedding') |
|
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) |
|
sinusoid_table = sinusoid_table.reshape(-1, P, P, C).permute(0, 3, 1, 2) |
|
sinusoid_table = torch.nn.functional.interpolate( |
|
sinusoid_table, size=(new_P, new_P), mode='bicubic', align_corners=False) |
|
|
|
sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape(-1, T, new_P, new_P, C) |
|
sinusoid_table = sinusoid_table.flatten(1, 3) |
|
|
|
if cur_frame != ckpt_num_frame: |
|
print(f'Pretraining uses 4 frames, but current frame is {cur_frame}') |
|
print(f'Interpolate the position embedding') |
|
T = ckpt_num_frame |
|
new_T = cur_frame |
|
|
|
P = int((n_position // cur_frame) ** 0.5) |
|
C = d_hid |
|
sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C) |
|
sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) |
|
sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear') |
|
sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) |
|
sinusoid_table = sinusoid_table.flatten(1, 3) |
|
|
|
return sinusoid_table |
|
|
|
|
|
class PretrainVisionTransformerEncoder(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, |
|
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., |
|
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, num_frames=8, tubelet_size=1, |
|
use_learnable_pos_emb=False, |
|
use_checkpoint=False, checkpoint_num=0, |
|
ckpt_num_frame=-1, with_ln=True, return_index=-1 |
|
): |
|
super().__init__() |
|
self.num_features = self.embed_dim = embed_dim |
|
self.patch_embed = PatchEmbed( |
|
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, |
|
num_frames=num_frames, tubelet_size=tubelet_size |
|
) |
|
num_patches = self.patch_embed.num_patches |
|
self.depth = depth + return_index + 1 |
|
self.use_checkpoint = use_checkpoint |
|
self.checkpoint_num = checkpoint_num |
|
logger.info(f"Use checkpoint: {use_checkpoint}") |
|
logger.info(f"Checkpoint number: {checkpoint_num}") |
|
logger.info(f"Real runing depth: {self.depth}") |
|
|
|
|
|
if use_learnable_pos_emb: |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) |
|
self.img_pos_embed = nn.Parameter(torch.zeros(1, num_patches//(num_frames//tubelet_size) + 1, embed_dim)) |
|
else: |
|
|
|
if img_size != 224: |
|
self.pos_embed = get_sinusoid_encoding_table2(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size) |
|
self.img_pos_embed = get_sinusoid_encoding_table2(num_patches//(num_frames//tubelet_size), embed_dim, cur_frame=1, ckpt_num_frame=1, pre_n_position=14*14) |
|
else: |
|
self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size) |
|
self.img_pos_embed = get_sinusoid_encoding_table(num_patches//(num_frames//tubelet_size), embed_dim) |
|
|
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
self.blocks = nn.ModuleList([ |
|
Block( |
|
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, |
|
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, |
|
init_values=init_values) |
|
for i in range(self.depth)]) |
|
|
|
if with_ln: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = nn.Identity() |
|
|
|
if use_learnable_pos_emb: |
|
trunc_normal_(self.pos_embed, std=.02) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token'} |
|
|
|
def forward_features(self, x, use_image=False): |
|
x = self.patch_embed(x) |
|
|
|
if use_image: |
|
x = x + self.img_pos_embed.type_as(x).to(x.device).clone().detach() |
|
else: |
|
x = x + self.pos_embed.type_as(x).to(x.device).clone().detach() |
|
|
|
B, _, C = x.shape |
|
x_vis = x |
|
|
|
for idx, blk in enumerate(self.blocks): |
|
if self.use_checkpoint and idx < self.checkpoint_num: |
|
x_vis = checkpoint.checkpoint(blk, x_vis) |
|
else: |
|
x_vis = blk(x_vis) |
|
|
|
|
|
x_vis = self.norm(x_vis) |
|
return x_vis |
|
|
|
def forward(self, x, use_image=False): |
|
x_vis = self.forward_features(x, use_image) |
|
return x_vis |
|
|
|
|
|
class PretrainVisionTransformer(nn.Module): |
|
""" Vision Transformer with support for patch or hybrid CNN input stage |
|
""" |
|
def __init__(self, |
|
img_size=224, |
|
patch_size=16, |
|
encoder_in_chans=3, |
|
encoder_embed_dim=768, |
|
encoder_depth=12, |
|
encoder_num_heads=12, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0., |
|
norm_layer=partial(nn.LayerNorm, eps=1e-6), |
|
init_values=0., |
|
use_learnable_pos_emb=False, |
|
num_frames=8, |
|
tubelet_size=1, |
|
use_checkpoint=False, |
|
checkpoint_num=0, |
|
ckpt_num_frame=4, |
|
return_index=-1, |
|
with_ln=False |
|
): |
|
super().__init__() |
|
|
|
self.encoder = PretrainVisionTransformerEncoder( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
in_chans=encoder_in_chans, |
|
embed_dim=encoder_embed_dim, |
|
depth=encoder_depth, |
|
num_heads=encoder_num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop_rate=drop_rate, |
|
attn_drop_rate=attn_drop_rate, |
|
drop_path_rate=drop_path_rate, |
|
norm_layer=norm_layer, |
|
init_values=init_values, |
|
num_frames=num_frames, |
|
tubelet_size=tubelet_size, |
|
use_learnable_pos_emb=use_learnable_pos_emb, |
|
use_checkpoint=use_checkpoint, |
|
checkpoint_num=checkpoint_num, |
|
ckpt_num_frame=ckpt_num_frame, |
|
with_ln=with_ln, |
|
return_index=return_index |
|
) |
|
logger.info(f'With LN: {with_ln}') |
|
logger.info(f'Total {encoder_depth} layer') |
|
logger.info(f'Return {encoder_depth+return_index+1}-th layer') |
|
|
|
self.apply(self._init_weights) |
|
|
|
def _init_weights(self, m): |
|
if isinstance(m, nn.Linear): |
|
nn.init.xavier_uniform_(m.weight) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
@torch.jit.ignore |
|
def no_weight_decay(self): |
|
return {'pos_embed', 'cls_token', 'clip_pos_embed'} |
|
|
|
def forward(self, x, use_image=False): |
|
T = x.shape[2] |
|
x_vis = self.encoder(x, use_image) |
|
B, TL, C = x_vis.shape |
|
x_vis = x_vis.view(B, T, TL // T, C) |
|
|
|
return x_vis |
|
|
|
|
|
def build_vit(config): |
|
model = PretrainVisionTransformer( |
|
img_size=config.vision_encoder.img_size, |
|
patch_size=config.vision_encoder.patch_size, |
|
encoder_embed_dim=config.vision_encoder.encoder_embed_dim, |
|
encoder_depth=config.vision_encoder.encoder_depth, |
|
encoder_num_heads=config.vision_encoder.encoder_num_heads, |
|
drop_path_rate=config.vision_encoder.drop_path_rate, |
|
num_frames=config.vision_encoder.num_frames, |
|
tubelet_size=config.vision_encoder.tubelet_size, |
|
use_checkpoint=config.vision_encoder.use_checkpoint, |
|
checkpoint_num=config.vision_encoder.checkpoint_num, |
|
return_index=config.vision_encoder.get('return_index', -1), |
|
with_ln=config.vision_encoder.get('with_ln', False), |
|
) |
|
model.default_cfg = _cfg() |
|
if config.vision_encoder.pretrained: |
|
logger.info(f"Loading pretrained weights from {config.vision_encoder.pretrained}") |
|
state_dict = torch.load(config.vision_encoder.pretrained, map_location='cpu') |
|
model.load_state_dict(state_dict, strict=False) |
|
else: |
|
logger.info("No pretrained weights!!!") |
|
return model |
|
|
|
|