[Init] upload model
Browse files- README.md +69 -0
- config.json +37 -0
- model.safetensors +3 -0
- modeling_config.py +21 -0
- modeling_videomaev2.py +535 -0
- preprocessor_config.json +18 -0
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
tags:
|
4 |
+
- vision
|
5 |
+
- video-classification
|
6 |
+
pipeline_tag: video-classification
|
7 |
+
---
|
8 |
+
|
9 |
+
# VideoMAE-v2 (giant-sized model, Pretrained on UnlabeledHybrid-1M)
|
10 |
+
|
11 |
+
VideoMAEv2-giant model pre-trained for 800 epochs in a self-supervised way on UnlabeldHybrid-1M dataset. It was introduced in the paper [[CVPR23]VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking](https://arxiv.org/abs/2203.12602) by Wang et al. and first released in [GitHub](https://github.com/OpenGVLab/VideoMAEv2).
|
12 |
+
|
13 |
+
|
14 |
+
## Intended uses & limitations
|
15 |
+
|
16 |
+
You can use the raw model for video feature extraction.
|
17 |
+
|
18 |
+
### How to use
|
19 |
+
|
20 |
+
Here is how to use this model to extract a video feature:
|
21 |
+
|
22 |
+
```python
|
23 |
+
from transformers import VideoMAEImageProcessor, AutoModel, AutoConfig
|
24 |
+
import numpy as np
|
25 |
+
import torch
|
26 |
+
|
27 |
+
|
28 |
+
config = AutoConfig.from_pretrained("OpenGVLab/VideoMAEv2-giant", trust_remote_code=True)
|
29 |
+
processor = VideoMAEImageProcessor.from_pretrained("OpenGVLab/VideoMAEv2-giant")
|
30 |
+
model = AutoModel.from_pretrained('OpenGVLab/VideoMAEv2-giant', config=config, trust_remote_code=True)
|
31 |
+
|
32 |
+
|
33 |
+
video = list(np.random.rand(16, 3, 224, 224))
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
# B, T, C, H, W -> B, C, T, H, W
|
39 |
+
inputs = processor(video, return_tensors="pt")
|
40 |
+
inputs['pixel_values'] = inputs['pixel_values'].permute(0, 2, 1, 3, 4)
|
41 |
+
|
42 |
+
with torch.no_grad():
|
43 |
+
outputs = model(**inputs)
|
44 |
+
```
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
### BibTeX entry and citation info
|
50 |
+
|
51 |
+
```bibtex
|
52 |
+
@InProceedings{wang2023videomaev2,
|
53 |
+
author = {Wang, Limin and Huang, Bingkun and Zhao, Zhiyu and Tong, Zhan and He, Yinan and Wang, Yi and Wang, Yali and Qiao, Yu},
|
54 |
+
title = {VideoMAE V2: Scaling Video Masked Autoencoders With Dual Masking},
|
55 |
+
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
|
56 |
+
month = {June},
|
57 |
+
year = {2023},
|
58 |
+
pages = {14549-14560}
|
59 |
+
}
|
60 |
+
|
61 |
+
@misc{videomaev2,
|
62 |
+
title={VideoMAE V2: Scaling Video Masked Autoencoders with Dual Masking},
|
63 |
+
author={Limin Wang and Bingkun Huang and Zhiyu Zhao and Zhan Tong and Yinan He and Yi Wang and Yali Wang and Yu Qiao},
|
64 |
+
year={2023},
|
65 |
+
eprint={2303.16727},
|
66 |
+
archivePrefix={arXiv},
|
67 |
+
primaryClass={cs.CV}
|
68 |
+
}
|
69 |
+
```
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "./",
|
3 |
+
"model_type": "VideoMAEv2_Base",
|
4 |
+
"architectures": [
|
5 |
+
"VideoMAEv2_Base"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoModel": "modeling_videomaev2.VideoMAEv2",
|
9 |
+
"AutoConfig": "modeling_config.VideoMAEv2Config"
|
10 |
+
},
|
11 |
+
"model_config":{
|
12 |
+
"img_size": 224,
|
13 |
+
"patch_size": 14,
|
14 |
+
"in_chans": 3,
|
15 |
+
"num_classes": 0,
|
16 |
+
"embed_dim": 1408,
|
17 |
+
"depth": 40,
|
18 |
+
"num_heads": 16,
|
19 |
+
"mlp_ratio": 4.363636363636363,
|
20 |
+
"qkv_bias": true,
|
21 |
+
"qk_scale": null,
|
22 |
+
"drop_rate": 0.0,
|
23 |
+
"attn_drop_rate": 0.0,
|
24 |
+
"drop_path_rate": 0.0,
|
25 |
+
"norm_layer": "nn.LayerNorm",
|
26 |
+
"layer_norm_eps": 1e-6,
|
27 |
+
"init_values": 0.0,
|
28 |
+
"use_learnable_pos_emb": false,
|
29 |
+
"tubelet_size": 2,
|
30 |
+
"use_mean_pooling": false,
|
31 |
+
"with_cp": false,
|
32 |
+
"num_frames": 16,
|
33 |
+
"cos_attn": false
|
34 |
+
},
|
35 |
+
"transformers_version": "4.38.0",
|
36 |
+
"use_cache": true
|
37 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a231169cd13307aeb29bc56259a494ef273bfd9b7232f881ac4e8d7e39713add
|
3 |
+
size 4105286120
|
modeling_config.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import re, ast
|
3 |
+
from transformers import AutoConfig, LlamaConfig
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.utils import logging
|
6 |
+
|
7 |
+
from easydict import EasyDict as MyEasyDict
|
8 |
+
from importlib import import_module
|
9 |
+
import os.path as osp
|
10 |
+
import argparse
|
11 |
+
import json
|
12 |
+
from copy import deepcopy
|
13 |
+
import sys
|
14 |
+
|
15 |
+
|
16 |
+
class VideoMAEv2Config(PretrainedConfig):
|
17 |
+
model_type = 'VideoMAEv2_Base'
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
**kwargs):
|
21 |
+
super().__init__(**kwargs)
|
modeling_videomaev2.py
ADDED
@@ -0,0 +1,535 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Based on BEiT, timm, DINO and DeiT code bases
|
3 |
+
# https://github.com/microsoft/unilm/tree/master/beit
|
4 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
5 |
+
# https://github.com/facebookresearch/deit
|
6 |
+
# https://github.com/facebookresearch/dino
|
7 |
+
# --------------------------------------------------------'
|
8 |
+
from functools import partial
|
9 |
+
import logging
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import torch.utils.checkpoint as cp
|
17 |
+
|
18 |
+
from transformers import AutoConfig, PreTrainedModel
|
19 |
+
|
20 |
+
from timm.layers import drop_path, to_2tuple, trunc_normal_
|
21 |
+
from .modeling_config import VideoMAEv2Config
|
22 |
+
|
23 |
+
def _cfg(url='', **kwargs):
|
24 |
+
return {
|
25 |
+
'url': url,
|
26 |
+
'num_classes': 400,
|
27 |
+
'input_size': (3, 224, 224),
|
28 |
+
'pool_size': None,
|
29 |
+
'crop_pct': .9,
|
30 |
+
'interpolation': 'bicubic',
|
31 |
+
'mean': (0.5, 0.5, 0.5),
|
32 |
+
'std': (0.5, 0.5, 0.5),
|
33 |
+
**kwargs
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
class DropPath(nn.Module):
|
38 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(self, drop_prob=None):
|
42 |
+
super(DropPath, self).__init__()
|
43 |
+
self.drop_prob = drop_prob
|
44 |
+
|
45 |
+
def forward(self, x):
|
46 |
+
return drop_path(x, self.drop_prob, self.training)
|
47 |
+
|
48 |
+
def extra_repr(self) -> str:
|
49 |
+
return 'p={}'.format(self.drop_prob)
|
50 |
+
|
51 |
+
|
52 |
+
class Mlp(nn.Module):
|
53 |
+
|
54 |
+
def __init__(self,
|
55 |
+
in_features,
|
56 |
+
hidden_features=None,
|
57 |
+
out_features=None,
|
58 |
+
act_layer=nn.GELU,
|
59 |
+
drop=0.):
|
60 |
+
super().__init__()
|
61 |
+
out_features = out_features or in_features
|
62 |
+
hidden_features = hidden_features or in_features
|
63 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
64 |
+
self.act = act_layer()
|
65 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
66 |
+
self.drop = nn.Dropout(drop)
|
67 |
+
|
68 |
+
def forward(self, x):
|
69 |
+
x = self.fc1(x)
|
70 |
+
x = self.act(x)
|
71 |
+
# x = self.drop(x)
|
72 |
+
# commit this for the orignal BERT implement
|
73 |
+
x = self.fc2(x)
|
74 |
+
x = self.drop(x)
|
75 |
+
return x
|
76 |
+
|
77 |
+
|
78 |
+
class CosAttention(nn.Module):
|
79 |
+
|
80 |
+
def __init__(self,
|
81 |
+
dim,
|
82 |
+
num_heads=8,
|
83 |
+
qkv_bias=False,
|
84 |
+
qk_scale=None,
|
85 |
+
attn_drop=0.,
|
86 |
+
proj_drop=0.,
|
87 |
+
attn_head_dim=None):
|
88 |
+
super().__init__()
|
89 |
+
self.num_heads = num_heads
|
90 |
+
head_dim = dim // num_heads
|
91 |
+
if attn_head_dim is not None:
|
92 |
+
head_dim = attn_head_dim
|
93 |
+
all_head_dim = head_dim * self.num_heads
|
94 |
+
# self.scale = qk_scale or head_dim**-0.5
|
95 |
+
# DO NOT RENAME [self.scale] (for no weight decay)
|
96 |
+
if qk_scale is None:
|
97 |
+
self.scale = nn.Parameter(
|
98 |
+
torch.log(10 * torch.ones((num_heads, 1, 1))),
|
99 |
+
requires_grad=True)
|
100 |
+
else:
|
101 |
+
self.scale = qk_scale
|
102 |
+
|
103 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
104 |
+
if qkv_bias:
|
105 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
106 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
107 |
+
else:
|
108 |
+
self.q_bias = None
|
109 |
+
self.v_bias = None
|
110 |
+
|
111 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
112 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
113 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
114 |
+
|
115 |
+
def forward(self, x):
|
116 |
+
B, N, C = x.shape
|
117 |
+
qkv_bias = None
|
118 |
+
if self.q_bias is not None:
|
119 |
+
qkv_bias = torch.cat(
|
120 |
+
(self.q_bias,
|
121 |
+
torch.zeros_like(self.v_bias,
|
122 |
+
requires_grad=False), self.v_bias))
|
123 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
124 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
125 |
+
q, k, v = qkv[0], qkv[1], qkv[
|
126 |
+
2] # make torchscript happy (cannot use tensor as tuple)
|
127 |
+
|
128 |
+
attn = (
|
129 |
+
F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1))
|
130 |
+
|
131 |
+
# torch.log(torch.tensor(1. / 0.01)) = 4.6052
|
132 |
+
logit_scale = torch.clamp(self.scale, max=4.6052).exp()
|
133 |
+
|
134 |
+
attn = attn * logit_scale
|
135 |
+
|
136 |
+
attn = attn.softmax(dim=-1)
|
137 |
+
attn = self.attn_drop(attn)
|
138 |
+
|
139 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
140 |
+
|
141 |
+
x = self.proj(x)
|
142 |
+
x = self.proj_drop(x)
|
143 |
+
return x
|
144 |
+
|
145 |
+
|
146 |
+
class Attention(nn.Module):
|
147 |
+
|
148 |
+
def __init__(self,
|
149 |
+
dim,
|
150 |
+
num_heads=8,
|
151 |
+
qkv_bias=False,
|
152 |
+
qk_scale=None,
|
153 |
+
attn_drop=0.,
|
154 |
+
proj_drop=0.,
|
155 |
+
attn_head_dim=None):
|
156 |
+
super().__init__()
|
157 |
+
self.num_heads = num_heads
|
158 |
+
head_dim = dim // num_heads
|
159 |
+
if attn_head_dim is not None:
|
160 |
+
head_dim = attn_head_dim
|
161 |
+
all_head_dim = head_dim * self.num_heads
|
162 |
+
self.scale = qk_scale or head_dim**-0.5
|
163 |
+
|
164 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
165 |
+
if qkv_bias:
|
166 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
167 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
168 |
+
else:
|
169 |
+
self.q_bias = None
|
170 |
+
self.v_bias = None
|
171 |
+
|
172 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
173 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
174 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
175 |
+
|
176 |
+
def forward(self, x):
|
177 |
+
B, N, C = x.shape
|
178 |
+
qkv_bias = None
|
179 |
+
if self.q_bias is not None:
|
180 |
+
qkv_bias = torch.cat(
|
181 |
+
(self.q_bias,
|
182 |
+
torch.zeros_like(self.v_bias,
|
183 |
+
requires_grad=False), self.v_bias))
|
184 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
185 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
186 |
+
q, k, v = qkv[0], qkv[1], qkv[
|
187 |
+
2] # make torchscript happy (cannot use tensor as tuple)
|
188 |
+
|
189 |
+
q = q * self.scale
|
190 |
+
attn = (q @ k.transpose(-2, -1))
|
191 |
+
|
192 |
+
attn = attn.softmax(dim=-1)
|
193 |
+
attn = self.attn_drop(attn)
|
194 |
+
|
195 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
196 |
+
|
197 |
+
x = self.proj(x)
|
198 |
+
x = self.proj_drop(x)
|
199 |
+
return x
|
200 |
+
|
201 |
+
|
202 |
+
class Block(nn.Module):
|
203 |
+
|
204 |
+
def __init__(self,
|
205 |
+
dim,
|
206 |
+
num_heads,
|
207 |
+
mlp_ratio=4.,
|
208 |
+
qkv_bias=False,
|
209 |
+
qk_scale=None,
|
210 |
+
drop=0.,
|
211 |
+
attn_drop=0.,
|
212 |
+
drop_path=0.,
|
213 |
+
init_values=None,
|
214 |
+
act_layer=nn.GELU,
|
215 |
+
norm_layer=nn.LayerNorm,
|
216 |
+
attn_head_dim=None,
|
217 |
+
cos_attn=False):
|
218 |
+
super().__init__()
|
219 |
+
self.norm1 = norm_layer(dim)
|
220 |
+
if cos_attn:
|
221 |
+
self.attn = CosAttention(
|
222 |
+
dim,
|
223 |
+
num_heads=num_heads,
|
224 |
+
qkv_bias=qkv_bias,
|
225 |
+
qk_scale=qk_scale,
|
226 |
+
attn_drop=attn_drop,
|
227 |
+
proj_drop=drop,
|
228 |
+
attn_head_dim=attn_head_dim)
|
229 |
+
else:
|
230 |
+
self.attn = Attention(
|
231 |
+
dim,
|
232 |
+
num_heads=num_heads,
|
233 |
+
qkv_bias=qkv_bias,
|
234 |
+
qk_scale=qk_scale,
|
235 |
+
attn_drop=attn_drop,
|
236 |
+
proj_drop=drop,
|
237 |
+
attn_head_dim=attn_head_dim)
|
238 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
239 |
+
self.drop_path = DropPath(
|
240 |
+
drop_path) if drop_path > 0. else nn.Identity()
|
241 |
+
self.norm2 = norm_layer(dim)
|
242 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
243 |
+
self.mlp = Mlp(
|
244 |
+
in_features=dim,
|
245 |
+
hidden_features=mlp_hidden_dim,
|
246 |
+
act_layer=act_layer,
|
247 |
+
drop=drop)
|
248 |
+
|
249 |
+
if init_values > 0:
|
250 |
+
self.gamma_1 = nn.Parameter(
|
251 |
+
init_values * torch.ones((dim)), requires_grad=True)
|
252 |
+
self.gamma_2 = nn.Parameter(
|
253 |
+
init_values * torch.ones((dim)), requires_grad=True)
|
254 |
+
else:
|
255 |
+
self.gamma_1, self.gamma_2 = None, None
|
256 |
+
|
257 |
+
def forward(self, x):
|
258 |
+
if self.gamma_1 is None:
|
259 |
+
x = x + self.drop_path(self.attn(self.norm1(x)))
|
260 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
261 |
+
else:
|
262 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
|
263 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
264 |
+
return x
|
265 |
+
|
266 |
+
|
267 |
+
class PatchEmbed(nn.Module):
|
268 |
+
""" Image to Patch Embedding
|
269 |
+
"""
|
270 |
+
|
271 |
+
def __init__(self,
|
272 |
+
img_size=224,
|
273 |
+
patch_size=16,
|
274 |
+
in_chans=3,
|
275 |
+
embed_dim=768,
|
276 |
+
num_frames=16,
|
277 |
+
tubelet_size=2):
|
278 |
+
super().__init__()
|
279 |
+
img_size = to_2tuple(img_size)
|
280 |
+
patch_size = to_2tuple(patch_size)
|
281 |
+
num_spatial_patches = (img_size[0] // patch_size[0]) * (
|
282 |
+
img_size[1] // patch_size[1])
|
283 |
+
num_patches = num_spatial_patches * (num_frames // tubelet_size)
|
284 |
+
|
285 |
+
self.img_size = img_size
|
286 |
+
self.tubelet_size = tubelet_size
|
287 |
+
self.patch_size = patch_size
|
288 |
+
self.num_patches = num_patches
|
289 |
+
self.proj = nn.Conv3d(
|
290 |
+
in_channels=in_chans,
|
291 |
+
out_channels=embed_dim,
|
292 |
+
kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
|
293 |
+
stride=(self.tubelet_size, patch_size[0], patch_size[1]))
|
294 |
+
|
295 |
+
def forward(self, x, **kwargs):
|
296 |
+
B, C, T, H, W = x.shape
|
297 |
+
assert H == self.img_size[0] and W == self.img_size[
|
298 |
+
1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
299 |
+
# b, c, l -> b, l, c
|
300 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
301 |
+
return x
|
302 |
+
|
303 |
+
|
304 |
+
# sin-cos position encoding
|
305 |
+
# https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
|
306 |
+
def get_sinusoid_encoding_table(n_position, d_hid):
|
307 |
+
''' Sinusoid position encoding table '''
|
308 |
+
|
309 |
+
# TODO: make it with torch instead of numpy
|
310 |
+
def get_position_angle_vec(position):
|
311 |
+
return [
|
312 |
+
position / np.power(10000, 2 * (hid_j // 2) / d_hid)
|
313 |
+
for hid_j in range(d_hid)
|
314 |
+
]
|
315 |
+
|
316 |
+
sinusoid_table = np.array(
|
317 |
+
[get_position_angle_vec(pos_i) for pos_i in range(n_position)])
|
318 |
+
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
|
319 |
+
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
|
320 |
+
|
321 |
+
return torch.tensor(
|
322 |
+
sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
|
323 |
+
|
324 |
+
|
325 |
+
class VisionTransformer(nn.Module):
|
326 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
327 |
+
"""
|
328 |
+
|
329 |
+
def __init__(self,
|
330 |
+
img_size=224,
|
331 |
+
patch_size=16,
|
332 |
+
in_chans=3,
|
333 |
+
num_classes=1000,
|
334 |
+
embed_dim=768,
|
335 |
+
depth=12,
|
336 |
+
num_heads=12,
|
337 |
+
mlp_ratio=4.,
|
338 |
+
qkv_bias=False,
|
339 |
+
qk_scale=None,
|
340 |
+
drop_rate=0.,
|
341 |
+
attn_drop_rate=0.,
|
342 |
+
drop_path_rate=0.,
|
343 |
+
head_drop_rate=0.,
|
344 |
+
norm_layer=nn.LayerNorm,
|
345 |
+
layer_norm_eps=1e-12,
|
346 |
+
init_values=0.,
|
347 |
+
use_learnable_pos_emb=False,
|
348 |
+
init_scale=0.,
|
349 |
+
num_frames=16,
|
350 |
+
tubelet_size=2,
|
351 |
+
use_mean_pooling=True,
|
352 |
+
with_cp=False,
|
353 |
+
cos_attn=False):
|
354 |
+
super().__init__()
|
355 |
+
self.num_classes = num_classes
|
356 |
+
# num_features for consistency with other models
|
357 |
+
self.num_features = self.embed_dim = embed_dim
|
358 |
+
self.tubelet_size = tubelet_size
|
359 |
+
self.patch_embed = PatchEmbed(
|
360 |
+
img_size=img_size,
|
361 |
+
patch_size=patch_size,
|
362 |
+
in_chans=in_chans,
|
363 |
+
embed_dim=embed_dim,
|
364 |
+
num_frames=num_frames,
|
365 |
+
tubelet_size=tubelet_size)
|
366 |
+
num_patches = self.patch_embed.num_patches
|
367 |
+
self.with_cp = with_cp
|
368 |
+
|
369 |
+
norm_layer = partial(eval(norm_layer), eps=layer_norm_eps)
|
370 |
+
|
371 |
+
if use_learnable_pos_emb:
|
372 |
+
self.pos_embed = nn.Parameter(
|
373 |
+
torch.zeros(1, num_patches, embed_dim))
|
374 |
+
else:
|
375 |
+
# sine-cosine positional embeddings is on the way
|
376 |
+
self.pos_embed = get_sinusoid_encoding_table(
|
377 |
+
num_patches, embed_dim)
|
378 |
+
|
379 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
380 |
+
|
381 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)
|
382 |
+
] # stochastic depth decay rule
|
383 |
+
self.blocks = nn.ModuleList([
|
384 |
+
Block(
|
385 |
+
dim=embed_dim,
|
386 |
+
num_heads=num_heads,
|
387 |
+
mlp_ratio=mlp_ratio,
|
388 |
+
qkv_bias=qkv_bias,
|
389 |
+
qk_scale=qk_scale,
|
390 |
+
drop=drop_rate,
|
391 |
+
attn_drop=attn_drop_rate,
|
392 |
+
drop_path=dpr[i],
|
393 |
+
norm_layer=norm_layer,
|
394 |
+
init_values=init_values,
|
395 |
+
cos_attn=cos_attn) for i in range(depth)
|
396 |
+
])
|
397 |
+
self.norm = nn.Identity() if use_mean_pooling else norm_layer(
|
398 |
+
embed_dim)
|
399 |
+
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None
|
400 |
+
self.head_dropout = nn.Dropout(head_drop_rate)
|
401 |
+
self.head = nn.Linear(
|
402 |
+
embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
403 |
+
|
404 |
+
if use_learnable_pos_emb:
|
405 |
+
trunc_normal_(self.pos_embed, std=.02)
|
406 |
+
|
407 |
+
self.apply(self._init_weights)
|
408 |
+
if num_classes > 0:
|
409 |
+
self.head.weight.data.mul_(init_scale)
|
410 |
+
self.head.bias.data.mul_(init_scale)
|
411 |
+
|
412 |
+
def _init_weights(self, m):
|
413 |
+
if isinstance(m, nn.Linear):
|
414 |
+
trunc_normal_(m.weight, std=.02)
|
415 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
416 |
+
nn.init.constant_(m.bias, 0)
|
417 |
+
elif isinstance(m, nn.LayerNorm):
|
418 |
+
nn.init.constant_(m.bias, 0)
|
419 |
+
nn.init.constant_(m.weight, 1.0)
|
420 |
+
|
421 |
+
def get_num_layers(self):
|
422 |
+
return len(self.blocks)
|
423 |
+
|
424 |
+
@torch.jit.ignore
|
425 |
+
def no_weight_decay(self):
|
426 |
+
return {'pos_embed', 'cls_token'}
|
427 |
+
|
428 |
+
def get_classifier(self):
|
429 |
+
return self.head
|
430 |
+
|
431 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
432 |
+
self.num_classes = num_classes
|
433 |
+
self.head = nn.Linear(
|
434 |
+
self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
435 |
+
|
436 |
+
def forward_features(self, x):
|
437 |
+
B = x.size(0)
|
438 |
+
|
439 |
+
x = self.patch_embed(x)
|
440 |
+
|
441 |
+
if self.pos_embed is not None:
|
442 |
+
x = x + self.pos_embed.expand(B, -1, -1).type_as(x).to(
|
443 |
+
x.device).clone().detach()
|
444 |
+
x = self.pos_drop(x)
|
445 |
+
|
446 |
+
for blk in self.blocks:
|
447 |
+
if self.with_cp:
|
448 |
+
x = cp.checkpoint(blk, x)
|
449 |
+
else:
|
450 |
+
x = blk(x)
|
451 |
+
|
452 |
+
if self.fc_norm is not None:
|
453 |
+
return self.fc_norm(x.mean(1))
|
454 |
+
else:
|
455 |
+
return self.norm(x[:, 0])
|
456 |
+
|
457 |
+
def forward(self, x):
|
458 |
+
x = self.forward_features(x)
|
459 |
+
x = self.head_dropout(x)
|
460 |
+
x = self.head(x)
|
461 |
+
return x
|
462 |
+
|
463 |
+
|
464 |
+
|
465 |
+
|
466 |
+
class VideoMAEv2(PreTrainedModel):
|
467 |
+
config_class = VideoMAEv2Config
|
468 |
+
def __init__(self, config=None):
|
469 |
+
super().__init__(config=config)
|
470 |
+
self.model_config = config.model_config
|
471 |
+
logger.info("Model config: {}".format(self.model_config))
|
472 |
+
self.model = VisionTransformer(**self.model_config)
|
473 |
+
|
474 |
+
def forward(self, pixel_values):
|
475 |
+
return self.model(pixel_values)
|
476 |
+
|
477 |
+
def extract_features(self, pixel_values):
|
478 |
+
return self.model.forward_features(pixel_values)
|
479 |
+
def vit_small_patch16_224(pretrained=False, **kwargs):
|
480 |
+
model = VisionTransformer(
|
481 |
+
patch_size=16,
|
482 |
+
embed_dim=384,
|
483 |
+
depth=12,
|
484 |
+
num_heads=6,
|
485 |
+
mlp_ratio=4,
|
486 |
+
qkv_bias=True,
|
487 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
488 |
+
**kwargs)
|
489 |
+
model.default_cfg = _cfg()
|
490 |
+
return model
|
491 |
+
|
492 |
+
|
493 |
+
|
494 |
+
def vit_base_patch16_224(pretrained=False, **kwargs):
|
495 |
+
model = VisionTransformer(
|
496 |
+
patch_size=16,
|
497 |
+
embed_dim=768,
|
498 |
+
depth=12,
|
499 |
+
num_heads=12,
|
500 |
+
mlp_ratio=4,
|
501 |
+
qkv_bias=True,
|
502 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
503 |
+
**kwargs)
|
504 |
+
model.default_cfg = _cfg()
|
505 |
+
return model
|
506 |
+
|
507 |
+
|
508 |
+
# @register_model
|
509 |
+
def vit_huge_patch16_224(pretrained=False, **kwargs):
|
510 |
+
model = VisionTransformer(
|
511 |
+
patch_size=16,
|
512 |
+
embed_dim=1280,
|
513 |
+
depth=32,
|
514 |
+
num_heads=16,
|
515 |
+
mlp_ratio=4,
|
516 |
+
qkv_bias=True,
|
517 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
518 |
+
**kwargs)
|
519 |
+
model.default_cfg = _cfg()
|
520 |
+
return model
|
521 |
+
|
522 |
+
|
523 |
+
# @register_model
|
524 |
+
def vit_giant_patch14_224(pretrained=False, **kwargs):
|
525 |
+
model = VisionTransformer(
|
526 |
+
patch_size=14,
|
527 |
+
embed_dim=1408,
|
528 |
+
depth=40,
|
529 |
+
num_heads=16,
|
530 |
+
mlp_ratio=48 / 11,
|
531 |
+
qkv_bias=True,
|
532 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
533 |
+
**kwargs)
|
534 |
+
model.default_cfg = _cfg()
|
535 |
+
return model
|
preprocessor_config.json
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_center_crop": true,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_resize": true,
|
5 |
+
"feature_extractor_type": "VideoMAEFeatureExtractor",
|
6 |
+
"image_mean": [
|
7 |
+
0.485,
|
8 |
+
0.456,
|
9 |
+
0.406
|
10 |
+
],
|
11 |
+
"image_std": [
|
12 |
+
0.229,
|
13 |
+
0.224,
|
14 |
+
0.225
|
15 |
+
],
|
16 |
+
"resample": 2,
|
17 |
+
"size": 224
|
18 |
+
}
|